
= 5 ey rm

= SAM TOOLKIT)
MACHINE CODE UTILITY - FOR ANY SAM

CONTENTS

PAGE ITEM
S1 INTRODUCTION,

S1 ~~ MANUAL FOR "AUTO DIS"
(SECOND DISASSEMBLER)

S2 MANUAL FOR CTOS.

S6 GUIDE TO WRITING SAM
MACHINE CODE.

EXTRA MANUAL FOR SAM TOOLKIT

Welcome to SAM TOOLKIT..You have been supplied with our SaM
ASSEMBLER package of programs PLUS 2 extra programs - CTOS and a
second DISASSEMBLER called “auto dis". In addition you also get
our GUIDE to writing machine code on the SAM ~ this appears
later in this manual. You should read through the SAM ASSEMBLER
manual first, and the rest of this supplement afterwards. If you
have ROM2 and were supplied with SAM TOOLKIT on DISK, you can
press F9, then SAM TOOLKIT will load in with a simple MNENU

program called "auto". Press keys 1 to 4 to select the program
you want to LOAD. Alternatively you can enter BOOT 1, then enter
LOAD followedby the programs name. (The type FONT is changed by
AUTO, but you can delete line 150 in the "auto" BASIC to keep
the usual SAM font if you wish). IF SAM TOOLKIT WAS PROVIDED ON

DISK, WE WILL ONLY HAVE FORMATTED ENOUGH TRACKS NEEDED TO MAKE
SAM TOOLKIT SO DON'T SAVE ANY MORE FILES ONTO YOUR LERM DISK.

MANUAL FOR THE 2nd DISASSEMBLER CALLED “auto dis"
This program loads into address 2600C in SAMs memory, as opposed
to the one supplied in SAM ASSEMBLER. It is loaded by simply
using LOAD “auto dis". We have included this separate
DISASSEMBLER because the one in SAN ASSENDLER is more
restrictive, and can't easily be used to DISASSEMBLE ROM O or 1,
or do DUMPS below 32768. "Auto dis” resides between 26000-32767,
so apart from that range of addresses will

* disassemble ROM O or ROM 1
* disassemble CODE or use DUMPS for all addresses except

26000-32767.
NOTE: You can use it for addresses 26000 32767 {f you
use the DISPLACEMENT "x" option.

The instructions are the SAME for both DISANNENBLERS EXCEPT the
following:

1. The ESC key will escape from PRINTING if the printeris NOT switched ON.
2. When you press the "R" key, instead of dlsansembling

the code FROM 49152 to 65535, ROM 1 im put into these
addresses and disassembled instead. Pressing the “R"
key again toggles back.
e.g. Load in "auto dis", and when asked to Input an
address enter 49152. You will see NOPs down the screen.
If you press “R" you will see a EL of ROM 1

appear. Pressing "R" again will revert back to a
disassembly of address 49152.

3. To get from the disassembler back inte BANIC press
the "Q" key for Quit. TO RE-ENTER use RUN,

4. To make a copy of "auto dis" from SAN BANIC, simply
press FO to DISK, or Fl to TAPE,

5. To change the PALETTE colours from the standard
one supplied simply add the appropriate instructions
using lines 91 to 120.

6. To disassemble ROM O simply enter the address required
in the range 0-16384.

7. To send a disassembly to the printer press the "P" key.
To stop sending, press "P" again.

B. The ESC doesn't work within the disassembler.
- S11 -

THE MANUAL FOR SOURCE CREATOR (CTOS)

SOURCE CREATOR has been written te allow you to create a source
file for the SAM ASSEMBLER from any piece of machine- code (or
“object code") up to approximately 5000 bytes in length. i.e. an
assembler creates machine code from a source file, this programdoes the reverse. Allowance is also made for bytes which
represent blocks of data (e.g. messages to be printed etc). CTOS

by the way stands for Code TO Source. The program is in fact a
reverse assembler.

If CTOS was provided on DISK then it can be loaded using the F9
key, followed by pressing key "3". Alternatively, you can enter
BOOT.1, then LOAD"auto ctos”. To load from TAPE press the F7 key
and PLAY the tape. To copy:the program, break into BASIC - this
can be done by entering FFF when asked for the start of the
code. Now press FO to copy to disk, or Fl to copy to TAPE.

When cToS has 1caded it asks you the NAME of the CODE file
thatyou want the program to work on. If you press ENTER, CTOS

assumes that the name of the file on your disk is called
"CONVERT". If it isn't you must enter the proper name.

The program naturally requires you to tell it which bytes, if
any, and DATA (e.g. spaces, messages, etc), . so that it knows
that the remaining bytes are genuine machine code. Within your
CODE you can have up to 100 blocks which are "ATA, and CTOS asks
you where each block STARTS. and ENDS. Tt can't do the
impossible, and you may well still have some work to do
manually, however it will save a great deal of time.
The main uses for CTOS are:-—
(a) Moving machine code to a higher or lower address.
(b) As a tutorial in conjunction with the TOOLKIT. 3(c) As a tool to enable users to alter or modify pieces of

: code from ROM's.or other sources. a(d) As a way to transfer files from any other assembler.
OPTIONS ARE AVAILABLETO :-
(1) Create data blocksup to a maximum of 100. These will

ror appear in the final source file as DB's. 10 bytes will
be inserted on each line of the source file.

(ii) Create labels within the source file. pd(iii) Create EQU's. to enable easier alteraticn of any absolute
addresses within the object code.

|

~The maximum SOURCE FILE length will be just over 32000 bytes. If
CTOS runs out of room while creating a. file then you will be

.~told "NO MORE ROOM FOR FILE". You will still be able to save the
file CTOS has created up to that point but it would be better to

try again with a smaller blockof, code.

GETTING STARTED...... pwBefore any work should be done on pai J a cocurce file, a few
words of advice. Any piece of ohject code you wish tc create a

|

: = 82. ©
:

source file from should at least be fairly well hnewn ¢to you.
There is little point in creating a file 1)carne oo don't know what
it does! First have your section of OBJECT OODE. saved to aseparate disk or tape. This must be no longer than.3000 bytes in
length. There are ways that any length of object code aay ble
processed, but this must be done in small sections and the
various pieces of OBJECT CODE joined after assembly. This
process is only recommended to those who are familiar with
machine code and would involve many hours of work. FO
Assuming your piece of OBJECT CODE is less than 5000 bytes, we
would advise using a small block of code first. Under lk for astart, then follow the instructions on screen.
CREATING THE SOURCE.
When loaded you will see the prompt “INPUT ORIGINAL START"
This must be the ORIGINAL address of the code block. i.e. Ifthe
code to be converted usually resides at address 32768, then you
must enter this address at the above prompt.
Once entered you will be asked "INPUT ORIGINAL END" so {Af the
block started t 32768 and you were converting 1000 bytes then
you would type 327684999 at this prompt. You add 999 as the
addresses are INCLUSIVE. NOTE if the address you type is lower
than the original start, the program will wai for a sensible
‘end address. Also if the end address is more ¢than 5000 bytes
further on from the start address, then again the program will
wait for the proper address.
After this you will be prompted "HOW MANY DATA BLOCKS", just
pressing RETURN will enter a zero and sero means NO DATA BLOCKS,

indicating all of the CODE is pure machine cede. Up to 100 data
blocks are allowed and this should be adequate for any piece of
code. Data blocks should have been found and noted from your
original investigation of the code.
NOTE inserting data blocksat the relevant places will create
less source file than definingno biocks. Some detective work
will be needed to find the data if any exists, and we recommend
using the NUMERIC and ASCII dumps from within the SAM ASSEMBLER
to find any relevant data. The ASCII dumps are particularly
helpful so that you can easily: see messages that should be
printed. Then as long as you know what the program is doing, and
if you think there are any numeric blocks, ¢ry ¢to find them
before creating a file.
You will need t0 note the start and the end of the blocks. Ifyou have entered a specific number to the prompt above, then the
program will now enter a loop and ask you fer each start and end
of block in turn until all blocks are entered. Blocks can be
defined outside of the code but they will be ignored when the
source is created. Once again the end address of a block must be
higher than the start of that block. Blocks can be entered in
any order - the program will still read through them. During
source creation if ablock of data falls half way through a
legal instruction (meaning that you have defined the start
wrongly). then the block will be ignored, so try ¢o wake sure
that you have the actual start of the block.

- 83-

1f yeu allow any ASCII data to be converted into source without
defining a data block. for it, then a lot of meaningless labels
will be created. This is because 2 (jump relative) instructions
are within the ASCII code range, and the program will attempt to
create labels that are not really needed. oo BN

Once all the data blocks have been entered (if any), the program
will create the source file without LABELS or EQU's. Once this
has been done you will be asked “DO YOU WANT LABELS Y or N".
Also shown on screen will be the start address and the length of
the SOURCE FILE that CTOS has created for you so far. If you
answer “"Y" to the prompt then the program will insert as many
labels as it can. If a label falls half way through an
instruction then it will not be inserted. If CTOS created lables
for you, it will then ask if you want it to create EQUs and
again to simply press "y" for yes, or “n" for no. EQUs are
created for any numbers that are needed which are NOT labels.

Finally CTOS will ask if you want to SAVE the source file or
LOAD THE ASSEMBLER. Pressing “S” will prompt you for a filename
and the SOURCE FILE will besaved for you. Pressing"A" will ask
you to put your ASSEMBLER disk’ into *he drive, ‘and having
pressed any key, it wiil load in the ASSEMBLER for you. At this
point the source file that has been created by CTOS will reside
in page 1 of the assembler. You should press the “a” key to go
into the assembler at this point.
When creating labels you will be told how many have been found
inside the code, and how many have been found outside the code.
Also shown is how many labels have been inserted — this is the
most time consuming part of the program so go and make a cup of
coffee if you are workingon a large block! The labels found
outside of the code can be inserted as EQU's, and as stated
above, you will be asked, once the main labels have been
inserted "DO YOU WANT EQU's Y or N". CTOS will always try to put
EQU's at the top of the file if it can, otherwise it will put
them at the end of the file.

|

|

DETAILS OF THE SOURCE FILE.

LINE NUMBERS........ I EE
SAM ASSEMBLER uses line numbers and usually defaults to line 10
and steps of 10. When a file created from CTOS is loaded into
the assembler the first thing to note is that the line numbers
take the form of addresses. This means that if the start of the
code block you converted was at 32768 then the first line number
in the source file will be 32768 (unless you also created
EQU's), the rest of the file will look just like a disassembly
of the code. ROTE DO NOT RENUMBER THE FILE UNTIL 1IT ASSEMBLES

PROPERLY. It should have an appropriate ORG added toc the source
file. a

a

LABELS.c0u... .
|

| |

The labels will take the form “L + ADDRESS" i.e: CALL 12345 will
be seen as CALL L12345, To find L12345 just use (LIST 12345)
this will list line 12345 onwards and a label should be present
at that line number.

U'S. ...coo0on oss 0 os
h

EQU's will be seen much the same as labels i.e. if label Li2345
js outside of the file it will be seen as : ©L12345 EQU 12345,
thus when the assembler assembles the file then label 1L:i2345

will be converted to 12345 — in other words CALL L12345 will be
assembled properly as CALL 12345.

Sometimes a label will be assigned where an absolute address was
meant — for instance the code below is a sixteen bit timing
loop. Listing 2 is the file you would write using the assembler,
listing3 is the file that CTOS would create. The 32768 in line
32768 is a timing constant that would not want to be changed.
This would not be a problem if you were just re-assembling the
code to the same address that it came from (i.e. 32768), but (if
you decided to move the code to address 30000 by adding so:

~~ 4,10 ORG 30000
Then on re—assembly the label L32768 would point to address
30000 and the constant would be changedto LD BC,30000. The way
round this is to edit out the “L" so leaving the instruction as
‘LD BC, 32768. This sort of thing has to be watched for throughout
the CTOS source file. BC could have been any of the register
pairs HL, DE, IX, or IY.

LISTING 2 NORMAL FILE. LISTING 3 CTOS8 CREATED FILE.

00010 ORG 32768 oo
00020 LD BC,32768 32768 1.32768 LD BC,L32768
00030 LOOP DEC BC

| 32771 L32771 DEC BC

00040 LD A,B 32772 LD A,B
00050 OR C 32773 OR C

00060 JR NZ,LOOP 32774 JR N2,L32771
00070 . RET uy

| 32776 RET

In the event that you are creating a source file starting at
address zero, then to put an ORG into it you would have to
create a multi-statement line i.e. 00000 ORG 77??? : LD A,10 or
whatever.
JR _INSTRUCTIONS.....
If you create a source file with no data areas defined, then all
JR instructions will show the instruction plus the label
pointing to the jump address as well as the actual displacement
byte shown after the "*~. The displacement acts on the two's
complement notation. The reason the byte is shown in this way is
so that you. can see if the byte is really ASCII data.

‘As an example the instruction JR NZ,1234% could actually be data
ft might.be seen in the CTOS file as. JR NZ,L13343 ;* 65. The
instruction JR NZ is byte 32 (space in ASCII). The byte 65 in
this example is the offset byte and would be added to the
address of the instruction JR NZ to form a new address to jump
to. It just might be some ASCII data though and {if it was it
would mean " A" (space then A). If on {investigation you
decide that this instruction is data then you could convert the
source file to read DEFB 32,65.

- 85 -

Again if you only intend to re-assemble the code back to fits
_original address then it would not matter as the offset byte

would not change. It you inserted some mcre instructions into
the source file between the instruction and the destination
label then the byte would change, and what should read "A" will
now be something totaily different. For instance if you inserted

just one instruction, say a NOP, then on assembly the JR NZ

12345 would be changed to JR NZ, 12346, Thus the sequence 32,65
would have been changed to 32, 66 (space B).

Just defining one data block will suppress this option and of
course create less source file. So if you want to create a file
with no data blocks, and at the same time suppress the
displacement byte being printed in the file, then define one
data block and give it START and END addresses that are outside
the block you are working on.

CTOS SUMMARY.

Once the source file has been created it can be loaded into the
SAM ASSEMBLER and edited in the same way as a normal source
file,Do investigate ‘%e code to be converted before creating a

file.
« DO LOOK for embedded data and ASCII strings to define as data

blocks.
* DO check for constants that have had labels assigned to them.

DO NOT re-number the file until you have finished editing ft.
DON'T try altering the code until you can assemble and run the
code as it originally was. Then and only then, make any
alterations that you may want.

* DO TRY to change labels that are more meaningfull to you.
* WATCH out for those JR's as they might be data.
»+ EXPERIMENT with small blocks until you get used to using CTOS.
* PLEASE DON'T USE CTOS TO PIRATE SOMEBODY ELSES CODE.

no»

CTOS is most useful for converting those small routines that
appear in various magazines to an address more convenient for

"

you. Most useful is the ability to take an old SPECTRUM routine
and convert it to a source file before modifying it to work on
the Sam Coupe. Also code produced from other assemblers can be
converted to a source file that will load into the SAM

ASSEMBLER.

_—— ——

GUIDE TO WRITING SAM MACHINE CODE

USING THE SAMS MEMORY PAGING SYSTEM

The following GUIDE has been written to help you get started
with SAM MACHINE CODE. It assumes that you already know how to
write CODE using a 280 chip, but are not familiar with how the
SAM works. A full technical manual is available from SAM

COMPUTERS. Co

- 86 -

THE MEMORY- PAGES AND BLOCKS aThe 256k SAM has 16 PAGES each of ‘which contains 16k (16384
bytes) of memory — if you multiply 16k by the 16 pages you get

-

the 256k! The first PAGE isnumbered O, the next is 1, and the
last is PAGE 15. :

The 512k is the same except that it has 32 PAGES numbered from 0
to 31. Simply regard a PAGE of memory as like a tray that can be
s1id out of a rack and replaced by another.

-

1n both machines these PAGES are RAM - i.e. memory that can be
changed by the computer cor yourself. You can READ it using PEEK,
or change it using POKE.

°°

‘In addition there is the ROM - this can be READ but you can't
change it at all with a POXE. The ROM contains BASIC and uses
THO 16k BLOCKS called ROM 0 and ROM 1.

The SAM is an 8 bit computer— {.e. in each address you can only
put (or POXE) a number from 0 to 255. In BINARY this is from
000CGO00 to 11111111 - there are 8 BITS that can 0 (or RESET or
1.OW or OFF). Any of the bits can be 1 (or SET ~r ON or HIGH).
Now the 2tU central chip that runs the computer can orly use
addresses from 0 to 65535 —- yes we know that you can POKE 131000
with a number but this isn't really the case at all as you will
see later.
So the question is how does the SAM use the extra memory
available? Let us imagine the whole of the memory from0 to
65535 set out in BLOCKS of 16k. The SAM has therefore 4 BLOCKS

which we will label A, B, C, and D.

0-16383 16384-32767 32766-49151 49152-65535
BLOCK A BLOCK B

©

BLOCX C BLOCK D

Now it is possible to take any of the PAGES of RAM and put then
into any of the 4 BLOCKS that are shown. Indeed ROM O or RON 1

can be put into any of the BLOCKS. The SAM constantly takes out
a PAGE from one BLOCK and substitutes another.

Incidentally, we are going to use DECIMAL in our explanations.
In HEX 0-16383 is O-3FFF, 16384-32767 is 4000-7FFF, etc.
When you switch on the SAM and start typing in BASIC the
following happens:

BLOCK A
"

BLOCK B BLOCK C BLOCK D
ROM O PAGE O PAGE 1 PAGE 2

The SAM puts ROM O into BLOCK A (0 to 16384). In BLOCK 2

are placed several items, and the start of your BASIC program
(16384-32767). BLOCKS C and D are available for BASIC or ‘CODE.

"When you use BASIC BLOCK D it'i{s constantly changed By sliding
“in ROM 1 while it is needed and then putting PAGE 2 back again

when it isn't. The lower ROM O takes care of this for you.’
To appreciate how this might happen let us imagine that you have
a fairly large piece of BASIC in your SAM of 27k length. The SAM

will store the start of this in PAGE 0, at about 23760. As the
BASIC is 27k long it will use all of PAGE 1 and go into PAGE 2
sO:

“3 87 ~-

BLOCK A BLOCK B BLOCK C BLOCK D

0-16383 16384-3277 32768-49151 49152-65535
ROM Q -. PAGE 0 . PAGE 1 PAGE 2

Your 27k of - -. Start at. -s-----————m—-s End at approx
BASIC +... 23760 7 514086

{27k is 2771024 bytes = 27646 -.2c¢ end of BASIC is 23760+27648
which is 51408). |

Now when you type in a new iine of BASIC, or edit an old one,
the SAM slides PAGE 2 out of BLOCK D and replaces it with ROM 1.
When you type in your new line of BASIC it is placed somewhere
in PAGE 0. whichis in BLOCK Bb so:

BLOCK A BLOCK B BLOCK C BLOCK D
ROM O PAGE © PAGE 1

|

ROM 1

Now when you have finished entering the new line of BASIC and
the syntax is ok, ROM O will move ROM 1 out of BLOCK D and
replace it with PAGE 2. The machine code in ROM O will then copy
the bytes of your new line ct BASIC into the correct position iu
PAGE 2.

All this memory switching is very fast and is done by a very
simple piece of machine code: OUT (251), A

where the value of A selects the PAGE number. This can only be
done within machine CODE - not BASIC.

LOOKINGAT PAGE O)

Let us look at PAGE O for a moment. This normally resides in
BLOCK B but you could put it into another block if required. In
BLLOCK B the PAGE starts at 1¢384 and ends at 32767. BASIC makes
use of it so:

NORMAL PAGE 0 at BLOCK B

16564~77 22-27 20736-20885 20886-21647
HEAP Storage area ~~ PAGE allocation Character
Approx. 3k needed by BASIC Patterns

21648-21975 21976-22015 22016-22527 22528-23039
UDG patterns Palette tab:e Colour table Xeyboard tables
23040-23733] 23734-27 ., Approx 23760-
System variables . Channeis area BASIC

The above has been written to READ from left toright. At 16384
is the start of the HEAP area. This is a SPARE area that you can
use to put some machine code - up to approx 3k, and run it. So
write your code, and ORG it to rur from this area.

|

EXAMPLE:
|

10 5G 16384:PUT 32768
20 LENGTH EQU END-START

20 START LD HL, (&5AR0):LD BC,16384
30 E%ND A:SBC HL,BC:PUSH HL:POP BC

40 RET
: oo

50 END NOP

Use .our ASSEMBLER to write the above. Having assembled it, type
~~ 'S8 ~ |

i:

SYM, and you will see that LENGTH is equal to 11 - showing you
that you have produced 11 bytes of m/code. Do a QUIT and save
this OBJECT code with the name BASTART from 32768, and length of
11. Now reload the code into your SAM using LOAD "BASTART" CODE
16384. Now type PRINT USR 16384, or LET r=USR 16384:PRINT rr.
This code is placed into the HEAP area, below BASIC, and is
therefore a handy area to use as it doesn't interfere with CODE

placed above BASIC either.

EXPLANATION: .

The system variable at &5AA0 (which is HEX SAAO as our assembler
copes with & or a HASH to denote HEX) is the start of BASIC but
is exactly 16384 bytes too long. So to find the address of the
START of BASIC you can use PRINT ((DPEEK &S5AAQ) — 16364) OR use
the above machine code. This CODE puts the start of BASIC into
HL at line 20, then subtracts 16384 from it. It then puts the
value into the BC register using PUSH HL:POP BC, and returns to
BASIC. This is because when you RETURN to BASIC, the.value held
in the BC register is given to BASIC. So using LET r=USR 16384
makes the value of r EQUAL to the BC register.
OTHER AREAS OF INTEREST:
The SAM stores the bytes that creates the FONT for characters
32-127 starting at 20886. The USER defined characters start at
21648 — each character needs 8 bytes. The Palette table holds
the bytes associated with each Palette number. If you do Palette
0,34 this makes colour 0 set to HELLFIRE. So if you do PAPER ©

and CLS, the screen will have a colour of HELLFIRE. To change
paper 0 back to black you can enter

(1) PALETTE 0.0 OR

(ii) POKE 21976,0 then POKE 21996,0
At address 21976 is the bytes for Palette 0, 21977 is for
Palette 1 and so on up to Palette 15. The same numbers must be
POXED 20 bytes higher if no flashing is to occur ~ that is why
we POKED both 21976 and 21996 with 0. If there are different
bytes then you will flash between them so:

. Address colourl colour 2
Palette © 29176 29196
Palette 1 :.29177 29197
Palette 2 29178 29198
etc.

So for nc flash PEEK 29177 and PEEK 29197 should be the szme.
POKE 29178,48 and POKE 21998,34 sets PALETTE 2 to flash between
WOAD and HELLFIRE. Doing PRINT PAPER 2;"fred" will print "fred"
on a flashing paper colour.
THE STACK

This is placed in PAGE O of memory at around address 20180. You
must be very careful if you MOVE PAGE O out of BLOCK B as that
is where the stack normally lives. If you always leave it in
this position, then you can forget about the stack completely.
GETTING STARTED with using the memory
It i= easiest if you simply leave BLOCKS A and B alone
containing ROM 0 and PAGE 0, and restrict the size of your BASIC
to lie between 23760 (approx) and 32767 — i.e. keep it in PAGE.

So keep the size of BASIC down and use CLEAR 32767 as the firstinstruction in BASIC. You can now:
- S§9 -

(a) Use PAGES 1,2.3,4, etc in BLOCKS C and D

(b)’ Use the HEAP area from 16384 to approx 19500(c) Have enough room for SOME BASIC.
(d) You can forget about the stack.

BLOCK A B C D

ROM O System+ PAGE 1 PAGE 2

your BASIC

When you want to put different PAGES into BLOCKS Cc and D this
can only be done TWO PAGES at a TINE. Co

LD A,3:0UT (251).,A
Port 251 controls which memory pages are BLOCKS C and D so the
above code will put Page 3 into Block C and Page4 into Block D.

BLOCK C BLOCK D

Before Page 1 Page 2
After LD A,3:0UT (251).A Page 3 Page 4
After LD A,10:0UT (251),A Page 10 Page 11
etc.

You ¢3an now write your m/;code to ORG from 32768, and you have
32k available in PAGE 1 and PAGE 2.
AN EXAMPLE OF MEMORY PAGING:
Lets imagine that you are writing some code that is over 32k
long - perhaps 70k. When you get near the end of your 32k you
will want to start with some new memory and will need to remove

PAGES 1+2 and put in PAGES 3+4 into BLOCKS C and D. This is how

it is done:

We might have some CODE in the HEAP area that is never moved out
so: :

10 ORG 16384:PUT 327686
LIST 20 START OUT (251),A
ONE 30 JP (HL)

10 END
. NOP

OR simply have, in your BASIC a line POKE 16384,211,251,233 as
- this will put the above code at 16384 for you.

Now let us imagine that you have ORGd your code to 32768 so:
00010 ORG 32768
00020 ; 1st 32k of my program - Pages 1+2

00030 BEGIN1 CALL SETUP

etc
LIST ORE EETWO 02000 LD HL, 40000

02010 CALL JOHN:CALL STORE
02020 ; Now you want. to move memory
02030 ;
02035 MEMEND LD HL,BACKHERE:LD (2000), HL
02040 MOVEMENM LD A,3:LD HL, 32768
02050 JP 16384
02060 BACKHERE LD HL, 34000; NE — from PAGE3+4
etc : TE

- 810 -

This is the source file for thenext32k of CODE, again ORGd at
32768, but will be placed into PAGES 3+4. The start of PAGE 3

in BASIC is 65536 (see later for explanation of BASIC page
boundaries.)

10010 ORG 32768 - -

10020 ; 2nd 32k of my program; load into 65536
10021 ; as it runs from PAGE 3.

oo .. 10025 BEGIN2 LD 1X, 34000
LIST

~~

10030 CALL ALAN
THREE 10040 "LD HL.4

ete
101000 ; Now to move backto PAGES 1, and 2
101010 MOVEMEMZ LD HL, (17000):LD A,1
101020 JP 16384; moves back to "BACKHERE"

EXPLANATION:
The CODE (LIST ONE) is put intothe HEAP area at 16384 that is
in PAGE 0. This allows us, when running CODE in BLOCKs C+D with

PAGE 1+2 to jump OUT of BLCCEs C+D into BLOCK B, switch the
memory *o PAGES 3+4 in BLOCKs C+D, and then jump back again to
the new code in BLOCKs C+D. Also the HEAP can be used to store
data needed for all ‘the CODE you run in BLOCKs C+D.

So ‘having POKED 16384, 211,251,233 and placed the CODE produced
by LIST TWO into 32768, and the CODE produced by LIST THREE into
65536 we can explain what would happen. You would begin from
BASIC with the CLEAR 32767, then do a CALL 32768.

The code produced from LIST TWO, starting at BEGINl1l, would then
be running with the memory SO:

BLOCK A B vo C D

RON © PAGE O PAGE 1 PAGE 2

The CODE calls SETUP, and runs until you get to CALL JOHN, <then
CALL SETUP. At the line MEMEND we want to stop running the CODE

in pages 1+2, and switch for a while to pages 3+4, and then
return back to Pages 1+2 again from BACKHERE.

At MEMEND we store the value of BACKHERE in the HEAP area at
address 17000. At MCVEMEM we set the "A register to 3 for PAGE
3, and HL at 32768, as this is the address we want to start
running our new code from in Page 3. Line 2050 does a JUNP
16384, so the 280 chip moves to 16384 with A=3 and HL=32768. At16384 the SAM is in BLOCK B, and the CODE switches BLOCKS C and
D to PAGES 3¢+4 so:

BLOCK c BLOCK D

Before
"

Page 1 Page 2
After LD A,3©

OUT (251),%~ '- "Page38. Page 4

Then the SAM does the instruction JP (HL), which, as HL=32768 inthis case, causes SAM to run from 32768 in BLOCK C which now has
PAGE 3 in it!

- 811 -

. So the CODE from LIST THREE would now run from BEGIN2. The IX

register will be loaded with 34000, etc. The code will run until
you get to MOVEMEN2. At this point you want to move back to

." PAGES 142, 80 line 11010 loads HL with the contents of address
17000 which was previously used to store the value of
“BACKHERE". The A register is loaded with ONE, for PAGE 1, and
the JP 16384 at line 11020 causes SAM to move out of BLOCKs C+D
and back into BLOCK B. The CODE in the HEAP area now switches
PAGES 1+2 back into BLOCKS C+D, and the JP (HL), makes the SAM

runfrom line 2060 - "BACKHERE".

We hope that you have understood what is going on. Clearly any
data needed by all PAGES of your code must be stored in BLOCK B,
and we suggest that valuable HEAP area for this.
There is still more to come, like how to access the screen
memory, using BLOCKS A and B, and so on, but for the moment, we
suggest that you get used to the above.
PAGES ALREADY USED CoThe TOP THREE pages of your SAMs memory should be left alone:

PACES 13, 14, and 15 for the 256k SAM

PAGES 23, 30, and 31 for the 512k SAM
- This is because the TOP TWO pages are used by the SCREEN and the

PAGE. 13 (29 for the 512k) .is where DOS is placed.

PAGE BOUNDARIES

As we said earlier, BASIC pretends that you can have addresses
above 65535. This is how it works.

PAGE BASIC start of page
1 32768
2 49152

3 65536
4 81920
S 98304
6 1146868
7 131072
8 147456

9 163840
10 180224
11 196608

C12 212992
13 229376
14 245760
15 262144

Indeed this simple BASIC ‘will calculate the START (or PAGE
BOUNDARY) of any PAGE:

LET START=16384*(PAGE+1)

For the 512k SAM you carry on up to PAGE 31. In the 256k SRAM DOS

..ig -in PAGE 13 which starts at 229376. When you copy DOS this is
done from 9 bytes higher up at 229385. When DOS runs this is
what happens to memory:

BLOCK E BLOCK C BLOCK D

Before Page O Page 1 Page 2

During DOS Page 13 Page 14 Page 2

After Page © Page 1 Page 2

- 512 -

When you load/save bytes the machine code in the DOS. loads the
bytes into BUFFERS (memory spaces) in Page 13, then memory is
switched as appropriate, and copied into correct PAGES by
putting those PAGES into: BLOCK: C+D. After use, .the PAGES are
restored to their usual BLOCKS. .

So you can ORG some machine code at 32768 (up to 32k in length),
to run in, for example, PAGE B. To run this code load it. into
address 16384*9 (using our formula), and then do CALL 16384+9 to
run the CODE. BASIC will automatically put PAGE 8 into BLOCK C
and PAGE 9 into BLOCK D. When you return to BASIC, then SAM will
automatically restore BLOCKs C+D to PAGES 1+2.

To test this out assemble the following CODE.

10 ORG 32768
20 LD HL, 40000
30 LD (STORE),HL
40 RET
50 STORE DS 2

If you use 7M you will see that STCRE EQUALS 32775. Now dc QUIT
and save the CODE as "TEST" from 32768 with a length of 10. Now
QUIT to BASIC and do CALL 32768, then PRINT DPEEK 32775. You
should get 40000 printed on the screen. Now . do LOAD"TEST"CODE
9216384 followed by CALL 9*16384. This time do PRINT PEEK

(9216384+7), and again 40000 should appear on the screen. This
is because although the value of STORE is 32775 it should really
be regarded as the "START OF THE PAGE PLUS 7 BYTES" —- i.e. the
PAGE BOUNLARY with an OFFSET of 7. So when running the CODE in
PAGE 1 you do PRINT DPEEK 32775, and in PASE 8 it {is DPEEK

(9*16384+73., but in BOTH CASES you are really looking at the
START of the PAGE plus an OFFSET of 7 bytes, and the CODE is run
at 32768, but with different PAGES in BLOCK C.

USEFUL VARIABLES
ESC key
To disable the ESC key do POKE SVAR &141,1
To enable it again do POKE SVAR &141,0
CAPS LOCK
To put CAPS LOCK on do POKE 23658,8
To switch it back to lower case POKE 22658,C

‘ [a

HOW TO SECURE BASIC.
The ON ERROR GJTO fred or whatever is easily stopped from within
BASIC by simply pressing the NMI button. We are going to show
you how to secure BASIC.

When you are in BASIC -it is easy to stop the ESC key working
using the POKE indicated above. However, you can BREAK into
BASIC using the NMI button at the back. The variable‘at &5AED is
the VECTOR that can be POKED to change this. When you press the
NMI button, SAM does DPEEK &S5AEO, and runs from that address,
doing the break into BASIC. If you DPOKE &5AEO,addr- where addr
is an address from which you want to run your code then; no break
to BASIC will occur. Try the following.

= 813 -

10 ORG 18000:PUT 32768
20 START DI:LD DE,START:LENGTH EQU END-START
30 LD SP, 20224
40 "PUSH DE:LD (23€13),SP
5C XOR A:LD (23610).,A
€0 LD HL, (STORE):EI
70 JP 271
75 STORE DS 2
80 END

*

NOP

This code can be assembled and saved — it is 25 bytes long, and
STORE is 18023. Save it with the name "ONERR". Having loaded in
the "ONERR" CODE into 18000, your BASIC program should have
something like the following:

:

10000 DEF PROC onerr
10010 POKE SVAR &141,1:DPOKE &5AEO,18000:DPOKE 18023,2
10020 END PROC

To set this up from within your BASIC do the following:
1 ONERR:CALL 18000
2 REM:Rest of your BASIC program

Run this BASIC and LINE 1 does the ONERR command. Every time an
error is met or you press the MMI button, the program will run
from the LINE number in address 18023 - we made it line 2 in the
above example. So FROM within your own BASIC, to change the line
number from which you want to. run if an error or break 1s met,
simply DPOKE 18023 with the new line number.

You could use the command LET a$=MEM$(18000 to 18024) and save
this m/code from within BASIC. Your BASIC could then be, as its
FIRST INSTRUCTION, POKE 18000,a$, then do the above PROCEDURE

called ONERR. The new ON ERROR routine will then be in place.
The CODE works by settingup a NEW stack at 20224, and it then
puts DE=start of the routine. This address is pushed onto the
stack, and the system variable ERROR STACK - POINTER (23613) is
loaded with the value of the STACK POINTER. Zero is placed into
23610, then HL is loaded with the' contents of address STORE,
which contains the line number from which BASIC should run. The
final JUMP is to the ROM location — ROM moves to the BASIC line
number given by HL. From now on, when an ERROR of any sort
happens, or the NMI button is pressed the error is trapped.

If there is an error in BASIC, then SAM looks at the address
inside 23613, and loads the STACK POINTER with this address, and
does a RET. Therefore the SAM picks up the value we pushed onto
the stack (=START), and runs from that address - i.e. 18000.

If the NMI button was pressed, even when using DOS, the SAM

looks into address &SAEO, ‘in this case -18000, and runs from
there.

f :
"

So in both cases, the SAM is forced to run from address 18000
which resets up the values of the STACK, and addresses 23613,
and 23610, and then looks up the contents of 18021 to find out
from which BASIC line number we should run from. .

ih
we S14 -

USING THE SCREEN
The following can be done from BASIC easily enough.

10 MODE 4:CLS:PRINT AT 1i0,3;PAPER 1:PEN5; "FRED"
20 PRINT !0;AT 0.5; "JOHN" ; TAB. 20; "BOY": PAUSE

Sorry, my printer won't print a HASH so I have used an !

instead. This wiil print "JOHN", . but also a message on the
bottom 2 lines normally used by the ANPUT command. How can you
do this in m/code?

10 ORG 32768:LENGTH EQU END-START

20 = OPEN EQU &112:AT EQU 22:PAPER EQU 17
24 PEN EQU 16:LASTK. EQU 23560

. 2S STARTLD (STACKSTORE), SP ~ ;STORE RETURN ADDRESS

28; CL
30 LD A,2:CALL OPEN "' ;OPENS UPPER SCREEN

40 LD HL,MESS1:CALL PRINT PRINTS MESS1
45;
50 LD A,O:CALL OPEN ; NOW PRINT MESS2

60 = LD HL,MESS2:CALL PRINT
65;
69 CALL PAUSE
70 LD SP, (STACKSTQRE): RET :BACX TO RASIC
80;
90 1ESS1 DB. AT, 10, 3,PAPER,1,PEN,S

100 DM "FRED":DB 255
105; Lo Co
110 MESS2 DB AT,0,5
120 DM "JOHN" :DB AT,O, 20
125 DM "BOY":DB 255
130;

140 PRINT LD A, (HL):CP 255:RET 2Z

150 RST 16:INC HL:JR PRINT
160 STACKSTORE DS 2
165 PAUSE XOR A:LD (LASTK),A ; PUIS \Y into LASTK

166 PAl LD A, (LASTK):CP "a:RET 2
167 LD A, (FLAGS):RES 5:LD (FLAGS).A
168 JR PAl
170 END NOP

Assemble the CODE, then do the following from BASIC.
9000 MODE 4:CLS:CALL 32768:STOP and then goto 9000.

EXPLANATION:
You can PRINT to any of 3 CHANNELS. The TOP of the screen, the
bottom few lines (used byINPUT), or to a printer. In machine
code, before printing you must set up the correct CHANNEL. To do
this simply load the Ay register with 0, 1, or 2 so:

LD A,0 for the bottom lines (normally used by INPUT)
LD A,2 for the top. part of the screen
LD A,3 for outputto the PRINTER.

The CALL &112 — a ROM routine that sets up the channels area to
output to the place required. So LINE 25 stores the STACK in a
space called STACKSTORE. Line 30 opens up the TOP of the screen,
and LINE 40 prints the first message. LINE 50 opens up the
botton part of the screen, and LINE 60 prints the message. LINE
69 calls our "are you pressingany key" routine, and LINE 80
restores the STACK POINTER to the correct position, and RET does
a return to BASIC. It is handy to store the STACK POINTER just
in case your stack gets moved wrongly, or you want to return to
BASIC in the middle of a machine code CALL.

- 815 ~-

Note the DATA held in MESS1 and MESS2. You must get the ROM to
print AT the correct position, with the appropriate PAPER and
PEN numbers.

Our PRINT routine starts by loading the A register with the
contents of HL - the first byte to print. It then does the ROM

routine RST 16 - this does the PRINT. After this the next
address is found using INC HL, and that in turn is printed. The
routine continues until byte 255 is found - this is used as an
END MARKER —- after which printing stops.
The PAUSE routine pokes the SYSTEM VARIABLE called LASTK with O.

It is then scanned until it changes, after which it RETurns.
LASTK is used by ROM to store the last key number that was
pressed.
PUTTING BYTES DIRECTLY INTO THE SCREEN MEMORY AREA

The screen lies in the TOP 2 pages — for the 256k these are
PAGES 14 and 15. Depending upon which of the 4 modes you are in
will dictate how much of the 32k is used, and the affect of
changing any of the bytes.
In MODE 1, the SPECTRUL inode, 6192 bytes are used. The screen is
divided into 3 parts, each of which has 8 liies. So lines 0-7
are in PART A, lines 8-15 in PART B, and lines 16-23 in PART C.
Using BASIC lines 0-21 are in the TOP part of the screen, and
lines 22 and 23 are in the BOTTOM part — normally used by INPUT.

Returning to our 6192 bytes - how are they configured? well it
is not easy to understand. The screen is a GRID of 24 lines DOWN

and 32 columns ACROSS. Every LINE of the screen has 32 spaces
which can be illustrated so:

LINE 0 EXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXX

LINE 1 XXXAXXXXXXXXX AARXXXXXAXARXXXXXXX

LINE 23 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

This GRID of 24 lines with 32 columns needs 8 bytes of memory
for each SPACE in the grid. Memory used = 24 x 32 x 8 = 6144
bytes. The remaining 768 bytes are used to control the COLOURS

of the GRID.

Each X is used to indicate a PRINTING SPACE. To print in any
SPACE requires 8 bytes. The first prints the TOP EIGHTH of the
character, then next the second EIGHTH and so on - that is why
you need EIGHT BYTES (each with 8 BITS), to make a USER DEFINED
GRAPHIC.

Let us imagine that PAGE 15 is in BLOCK B from 16384 onwards.
This is achieved by doing from machine code

_.LD A,14:0UT (250),A
provided that you are in BLOCK C or D. PORT 250 controls the
BLOCKS A+B, so that doing this piece of machine code puts PAGE

14 into BLOCKA and PAGE 15 into BLOCK B. ROM 0 will no longer
be availablenor the HEAP area.

~~. BLOCK A B C DBEFORE ROMO PAGED PAGE] PAGE2
AFTER LD A.14 PAGEl14 PAGE15 PAGE] "PAGE2
OUT (:.50).,A C

Now you can POKE anything from 16384 to (16384+6144) with a BYTE
and it will place a mark on the screen 6 pixels WIDE and 1 pixelDEEP - that is it prints one EIGTH of a SPACE with the bitsassociated with the byte you are poking.

|

e.g. POKE 16384,255 would print a thin BAR as all 8 bits
. N of 255 are SET (255 = BIN 11111111)Cye

POKE 16384,60 would print a "- (60 = BIN 00111100)

The above can be seen using the following BASIC. We don't POKE
16384, but the memory for PAGE 14, which is 15%*16384. For the512k SAM the screen is in PAGE 30 so change the below to

1 31*16384.

1¢ LET START=15*"16%t" :BORDEEF 7

AY LET PBYTE=255:MODE !:CLS
LIST 30 FOR A=START TO (START+31}
FOUR 4G FOKE A,PBYTE

50 BEEP .03,0
60 NEXT A

Run this BASIC and you will see that :t makes thin lines acrossLINE 0 of the screen. Try it again but EDIT LINE 20 making
PBYTE=BIN 00111100

|

What you are REALLY doing is to poke the first 32 bytes of PAGE
14 with the value of PBYTIE.

The same can be achieved using the following CODE which must runfrom BLOC: C. It puts the SCREEN FAGE into BLOCK B, and POKES
16384 onwards. It could have been put into BLOCK A using LD
A,614+32 and having HL=0. 32 must be added to the PAGE NUMBER if"you use BLOCKA - see later.

10 ORG 32768
20 DI ;2tops the interupts.3 LD (STORE),SpP .2tores the stack pointer40 LD SP, 50000 puts stack into BLOCK C
50 LD A,7:0UT (254).A ;berder7 (=white)
55 IN A, (250):LD (5T2).A 3 store page in BLOCK A
60 LD A,13:0UT (250).A ;PAGE1I3/14 into BLOCK A/B
70 LD B,32:LD HL,16384:LD A, 255

, BO. F1 LD (HL).A ; POKES 255 thirty90° INC HL:DJNZ F1 ;two' times
100 LD A, (ST2):QUT (250),A ;PAGE 0,1 into BLOCK A/B
110 . LD. SP, (STORE) :EX . Returns stack to Block B
120 RET | rand back to BASIC

i

130 5T2 DS 2For the 512k SAM change LD A,29 in line 60. You must put the SAM

into MODE1 before running this code. Now if you change list FOUR
LINE 30 to:

FOR A=START TO (STAET+8432-1)
- 517 -

and run the program you will see that the first 256 bytes of the
PAGE contain the memory for the FIRST 8th of LINES O to LINE 7 -
i.e. the top THIRD of the screen.
Now change line 30 to: FOR A=START TO (START+16*32-1)
and run the ‘program. ‘You will see again that the FIRST 256 bytes£111 up the FIRST EIGHTH of LINES O to 7, and that the next 256
bytes fill up the SECOND ‘eigth of LINES 0-7. So the first 256%8
bytes makes up LINES 0-7. Change line 30 to

FOR A=START TO (START+64*32-1)
and delete line 50 to see the whole of the top third completed.
You can probably guess the ‘rest. The middle 1lines 8-15 arecontrolled exactly the same way as the top third. 256 bytes
print the first eighth of lines 7-15, and so on. Finally the
last third, lines 16-23 follow the same pattern. Change line 30
to ~~ FOR A=START TO (START+6143)
but add a line 70 so: 70 PAUSE

to see the complete screen fill up.
Now for the last 728 bytes of the screen. These control the
COLOURS of each space. The first does space 0,0 and the next 0,1
and the next 0,2 until line 0 is complete. The next is 1,0 then
1,1 and so on. The last 728 bytes give the colours of all the
SPACES on the 24x32 GRID, starting at the top left and movin
nrcross the screen, one row at a time. To see this add line 70
So:

70 FOR A=(START+6144)TO {(START+6911):POKE A, 45:NEXTA
80 PAUSE

The 45 sets the screen to be CYAN. To select a colour you use
the following formula: Co

PEN + B8*PAPER + 64 IF BRIGHT ON + 128 FOR FLASH
So to have pen cyan, paper‘yellow, with BRIGHT on use

5 + 8*6 + 64°
(blue=1, red=2, magenta=3, green=4, cyan=5, yellow=6, white=7,
black=0)

|

To make flash ON simply add 128.

To calculate the 8 OFFSET addresses associated with a point of
the GRID with LINE A, COLUMN B use:
FOR LINES 0-7: FIRST ADDRESS = 32*A + B

"2nd address first + 256
3rd address first + 2*256
8th address first + 74256

FOR LINES 8-15 FIRST ADDRESS = 2048 + 32% (A-8) + B

2nd address = first + 256, etc
8th address = first + 7%256

FOR LINES 16-23 FIRST ADDRESS = 4096 + 32%(A-16) + B
2nd address = first + 256
8th address = first + 7%256

These OFFSET addresses are to be added to the BASE address of
the screen so:
To calculate the BASIC addresses of the 8 required for the point
9,12 you would do the following:

"BASE address = 16384°(PAGE+1)
for the 356k SAM BASE = 16304*135 = 245760
but for S12k SAM BASE = 16304°3] = 307904

- 810 -

Now we must add the OFFSET — as the line is between 8- 15 Wwe use
the middle formula with A=9 and B=12 so

OFFSET for 1st address = 2048 + 32%(9-8)+12=2092

So the FIRST address is BASE+OFFSET, which for the 256k SAM is24576042092 = 247852 (or 2092 bytes into PAGE 14). The remaining
7 addresses are calculated by adding on 256, then another 256,
then another. i.e. 247852, 248108, 248364, etc. Co

Complicated isn't it!!!
All the above is for MODE 1 only. Different configurations apply
for MODES 2, 3, and 4 which we won't go into. You can get the
technical manual for the SAM to explain these.
HOW TO COPY THE ROMS + FURTHER EXPLANATION OF PORT 250

To copy ROM O all we need to do is to move 16384 bytes from
address 0 to 32768 so: :

10 ORG 50000
20 START LD HL,O0:LD DE, 32768
30 LD BC,16384:LDIR:RET
40 END NOP
50 LENGTH EQU END-START

Assembl e this, quit to BASIC, then entex CALL 50000. You can
save the rom so: SAVE "ROMO" CODE 32768, 16384

Now how can we copy RCM1?

10 ORG 16384:PUT 32768
20 START DI:IN A,6{250):LD (STORE),A
25 SET 6,A:0UT (250).,A
30 LD HL, 49152:LD DE, 32768
40 LD BC, 16384:LDIR
>0 oo LD A; (STORE) ; ouT (250), A60 EI RET
70 EWD NOP
80 LENGTH EQU END-START

First more explanation of PORT 250. This controls which PAGES of
memory go into BLOCKs A+B. ‘So

LD A,4:0UT (2S0).A
will put PAGES 4+5 into BLOCKs A+B. In addition however if you
ADD 64 (i.e SET BIT 6 of A) to the value of A, BLOCK D is
changed to make it ROM 1 so:

BLOCK A
A

B :

Cc
~~

D

Before ROM O PAGE1l
©

PAGE2 PAGE3
After LD A,666 PAGE4 PAGES PAGE2 RONM1

OUT (250).A
Set the first 5 bits (i.e. BITS 0,1,2,3,4) of the value of the A

register to decide which PAGE goes into BLOCKS A+B,

BIT 6 if set ON (or by adding 64 to the page number), makes
BLOCK D have ROM 1 in it. Block Cc ‘fis unchanged and is only
affected by port 251.

= 519 =

BIT 5S (or by adding 32 to the page number) if set OR makes the
RAM in BLOCK A act as a ROM - i.e. you can put your own ROM into
a page of memory, and then get the SAM to regard it as ROM ©

rather than SAMs ROM 0. Indeedif you EVER want to WRITE to
BLOCK A, then BIT S must be ON and BIT 7 OFF - whether you use
it as a ROM or just for running some CODE. By setting BIT 7
(adding 128 to PAGE number) as well you WRITE PROTECT the RON

just like a normal ROM, but if this bit is left OFF you can
-change (or POKE) the CODE. So if you put a ROM into PAGE 3 (i.e.
address 65536 in BASIC), by doing LD A,6163:0UT (250) ,A you make
the following happen:

Co

~ BLOCK A BTC
|

D

PAGES PAGE4 same as before
(WRITE protected

ROM)

The 163 is made up so: THREE for PAGE3 + 32 TO make it ROM
: + 128 to write protect the ROM.

1f you had used A=35 ¢then the ROM can be poked.- We will
illustrate this further by showing how you can put the SPECTRUM
ROM into the SAM and run it. To do this there is one further
complicaticn. The screen is normally in PAGE 14 for the 2%6k or
30 for the >12k SAM. We are going to dn the Follow ng:~

BLOCK B CPAGES PAGE4 PAGES PAGER

(SPECCY ROM) (must be screen)
Block B starts at 16384 which is where the Spectrum needs its
screen. So in addition to putting the correct pages into the
correct blocks, we must also tell the SAM that the screen is in
PAGE4. This is easy to do as PORT 2532 is used. 80 {f we do

LD A,4:0UT (2352),A
this will do the trick.

- BLOCK A 3 C D TV port
Start ROMO PAGEO PAGE) PAGE2 14 or 30
Stepl PAGE3 PAGKE4 PAGEL PAGE2 14 or 30

(but as ROM)

Step2 PAGE3-RONM PAGE4 PAGE] PAGE 2 PAGE4
Step3 PAGE3-ROM PAGF4 PAGES PAGE6 PAGE4

Now we can plan our m/code. Wu need to put 163 out of PORT 250,
4 out of PORT 252, and S$ out of PORT 251. There {s still one
problem as you will see.
Write the folowing code:

oo10 ORG 50000
LIST - 20 LD A,163:0UT (250) ,A ;Puts PAGE3 into BLOCK A as ROM

FIVE 30 LD A,4:0UT (252) ;A ;Puts PAGE4 as screen PAGE
40 JP 15000 :

Save it as "moverl” CODE 50000,11
Now write the following code:

10 ORG 15000:PUT 32768 =LIST 20 LD A,4:0UT (251),A ; Puts PAGE4/5 into BLOCK C/D
SIX 30 JP © ; Restarts the computer

Save it as "moverl"” CODK 2764.7

Switch you SAM off then on again and boot your DOS using the
command BOOT 1. Enter CLEAR 49999.
Now load in your SPECTRUM ROM into 65536.

Then LOAD “moverl CODE 50000
Then LOAD“mover 2“CODE

Leotaee15000)
Figally CALL 50000
EXPLANATION:

First we CLEARED 49999 to protect our CODE above 50000.
Second we loaded the Speccy ROM into PAGE 3 at 65536.
Then we put our “moverl” CODE into 50000 and "mover2” CODE into
65536+15000. This “"mover2" code was put into 15000 as this is a
SPARE AREA in the Speccy ROM - this is VITAL for memory moving.
Now when we did CALL 50000 the m/code did stepl and step2 - itmade the SCREEN PAGE 4 and put PAGES 3+4 into BLOCK A+B and made
BLOCK A into ROM. The SAM was doing this from address 50000 in
BLOCK C. EET

Now comes the problem. We want to.change BLOCK C+D BUT the SAN

is already there at 50000 or so. That is why we put our “mover2"
CODE into 1500: - so the JP 15000 causes the SAM to move from
50000 or so to 15000 which is in BLOCK A. Now ve are safely in
BLOCK A we can change BLOCK C+D so the CODE at 15000 puts PAGES
4+5 into BLOCKS C+D for us. This is how we achieve STEP3.

To get out of being a SPECTRUM use the RESET button on your SAN.
To change ALL 4 BLOCKS with different PAGES you should

(a) CALL M/CODE set up in BLOCK C or D
’

(b) this code switches pages in BLOCKS A+B and sets the TV PAGE
(c) now JUMP to some code setup in BLOCK A or B

(d) this code in BLOCK A or B switches the CODE in BLOCKS C+D.

Incidentally, the STACK is now important as you have changed all
the PAGES in the BLOCKS. The SAK is set up with the STACK at
around 20100 or so in PAGE 1. You will need to set a new stack
somewhere. e.g. LD SP,60000

SUMMARY OF PORTS R

PORT 252 - SCREEN PORT
This is used to indicate which PAGE of memory the screen is in.
In a 256k SAM it is PAGE 14+15, and the 526k SAM it is 30431.

From BASIC you can do PRINT IN(252) BAND 31
You can have a screen in a different PAGE(S). Simply do this.10 LD B,NEWPAGE ; PUT B=NEW PAGE NUMBER

15° IN A, (252) ; GET CURRENT PORT DATA

20 ARD 224 ; SETS BITS 0 TO 4 TO ZERO
30 OR B ; PUTS BITS FROM A REG TO B
40 OUT (252),A : SWITCH TO NEW PAGE

Summary of PORT 252:
BITS 0-4 PAGE NUMBER
BIT 5 First BIT of. screen mode,
BIT © :. Second BIT of screen mode
BIT 7 - .Used by MIDI channel

To the PAGE number add 0 for MODE 1, 32 for MODE 2,
64 for MODE 3, and 96 for MODE 4.

- S21 -

e.g. To set the SCREEN to PAGE 14 in MODE 2 do LD A, 14+32

PORT 251 — CONTROLS BLOCKS C+D .: BITS 0-4 PAGE NUMBER

BIT 5-7 Used in Modes 3+4 for colour settings
PORT 250 —~ CONTROLS BLOCKS A+B

BITS 0-4 PAGE NUMBER

8T S When ON RAM replaces ROM 0 in BLOCK A.
BIT 6 When ON Block D is ROM1, Block C unchanged
BIT 7 ~~ When ON it write protects BLOCK A.

PORT 254 - Controls BORDER colour
BITS 0-2 Border colour
BIT 3-7 MIC, BEEP and other OUTPUTS.

If you do LD A,7:0UT (254),A the Border will change to cclour 7.

USING THE JUMP BLOCKS
Sc that you can use ROM routines, the SAM was sel up with JUMP
BLOCKS. 1f you leave BLOCKS A+B alone as we suggest, then it is
easy to mccess the ROM routines. If you put your own CODE into
BLOCKS A+B then you can switch IN ROM 0 and PAGE 1 for a while
to access the ROM routines, but you must be careful with the
STACK, and the INTERUPT ROUTINE if interupts are enabled. We are
going to assume that you leave ROM O and PAGE 1 in BLOCKS C+D.

e.g JCALLBAS (&10F)
If you are running some machine code in BLOCK C or D and
want to CALL a BASIC routine do the following:

2000020010 LD HL, 30 ;LOAD HL WITH THE BASIC LINE NUMBER

20020 CALL &10F ;CALL THE JUMP BLOCK

20030
fo to goto BASIC LINE 30, load HL with 30, and do
CALL &10F. To return back to your CODE at 20030 ensure
that an ERROR occurs in the BASIC. e.g. STOP, or RETURN.

e.g. JCLSBL (&14E)
Clear entire moreen if A register is zero, else upper
screen only.

e.g. JCLSLOWER (&151)
Clears the lower screen,

e.g. JMODE (&15A)
Put the A register equal to the MODE required then do a
CALL &151

e.g JKBFLUSH (&166)
Even when working a routine the keyboard can be READ and
the keys STORED before being acted upon. You can CLEAR

this butter using CALL &166

- $32 =

We hope that the above has proved to be a useful introduction to
machine code writing on the SAM. The TECHNICAL MANUAL available
from SAM COMPUTERS goes into much more detail, but is short on
examples and is certainly not easy to follow. We wish you well.
Do explore fully the superb BASIC that SAM has -~ machine code
isn't always necessary!

OTHER LERM PRODUCTS FOR THE SAM

SAMDISK - A superb DISK MANAGER/DOCTOR to REPAIR bad disks, a
VERY FAST and EASY to use <COPY/FORMAT/ERASE/HIDE/PROTECT, as
well as UNERASE. There is an extra FREE "BASIC BOOT" program,
and much more. It is ESSENTIAL - even if you have the new
MASTERDOS!! Sold ON DISK.

SAMTAPE 3 and 4 - The main Spectrum emulator used by SAM owners.
Allows 1000's of Spectrum programs to run on a SAM including
utilities like Tasword, and Desk Top Publisher by PCG. Version 3

is for all SAMs with a DISK. Version 3T is for all SAMs WITHOUT

a disk drive. Version 4 comes on disk and is for DISK owners who
have ROM2 - it has many extra features including COMPRESSION . of
memory, selecting your OWN palette colours, the Spectrum COFY

command works, and much more.

SAM ADDRESS and PHONE manager.
A superb ‘program to keep track of addresses and telephone
numbers - up to 5000 on a single disk. Has alphabetic sort,
prints to labels, SEARCH, AMEND, and can even be used to store
prices paid by customers with a product code. In lister mode it
will print out on sheets of A4 all names, addresses and phone
numbers. Ideal for mail apr. X-mas cards, etc.
FOR DETAILS INCLUDING PRICE, SEND A STAMPED ADDRESSED ENVELOPE
TO LERM SOFTWARE, 11 BEACONSFIELD CLOSE, WHITLEY BAY, TYNE AND

WEAR. NE25 9UW. TELEPHONE (091) 2533615.

WE ALSO PROVIDE AN UPDATE SERVICE.

LERM TOOLKIT vl — COPYRIGHT LERM SOFTWARE 1991.

- $33 =

