ADVENTU

An adventure creating utility for the SAM Coupe

(C) - 1992 AXXENT SOFTWARE

INTRODUCTION
SETTING UP SAS
PLAYING THE DEMO ADVENTURE
PLANNING YOUR ADVENTURE
THE SOURCE EDITOR
Creating An Adventurs
Entering Locations
Defining Messages
Defining Movable Objects
Defining Unmovable Objects
Defining Verbs
Defining Directions
Defining A Vocabulary
Saving Adventurs Source To Disk
The Source Banke
The SAS Programming Languags
Using Flags In An Adventure
Entering Source Commands
Source Editor Controls Summary
THE SOURCE COMPILER
THE GBAPHICS EXTENSION PROGRAM
Designing Your Pictures
Using Graphics In Your Adventurs
Using The Graphics Extension Program
TESTING YOUR ADVENTURE
MORE ABOUT MESSAGES
USING MEMORY EFFICIENTLY
CUSTOMISING SAS
Using BASIC Subroutines Within SAS
Calling Machine Code Subroutines
Using Colour
Using Foreign Charctere And User Defined Graphics
Using Different Text Fonts
Useful Addresses To POKE

APPENDIX 1 - GLOSSARY OF SOURCE COMMANDS
APPENDIX 2 — SYSTEM FLAGS

APPENDIX 3 - COMPILER ERROR MESSAGES

APPENDIX 4 — INTERPRETER ERBROR MESSAGES
APPENDIX 5 - "START" STARTER FILE SOUBRCE LISTING
APPENDIX 6 — SAS SPECIFICATIONS

INDEX

INTRODUCTION

Thank you for purchasing SAS. Thie program enables you to deeign and create professional idventure
games on your SAM Coups, enabling you to uee SAM's impreseive capabilities to the full, SAS is
designed to give the user a senee of freedom from many of the usual coding chores associated with
writing a game from scratch. It allows you to instead, concsntrate on the puzzles and overall deeign of
your adventurs, whilst still allowing you full flexibility over the final "feel" and ambiencs that you
wish to create,

I have tried my best to make SAS as flexible as possible, The user is abls to create his own BASIC or
Machins code routinse and combine them with ths adventurs source, giving the final game a greater
degres of individuality than was possible with other adventure creators. | have devoted ons section of
this manual to "cuetomising” SAS to suit the user's own personal prsferences,

The system conelsts of three main parte, namely :

2DROT
The Editor - To creats your adventure "source" (the component partas that make up the
adventure such as locations, vocabulary stc).

The Compiler - To convert your adventure “source” into executable code,

The Interpreter - This is a set of code routines which combine with your compllsd adventure to

form a complete stand alone game which you can play.

SAS requires 512k of internal memory, at least one disk drive fitted and a ROM 2.1 or later present.
If you're unsure of which ROM version you have, type PRINT PEEK 15 from BASIC. If the number
printed on the ecreen is less than 21, then you will nsed a replacement ROM chip for your SAM.
Contact SAMCo for details on how to cbtain this. SAS will also FS&B"g%f{a and use the IMb memory
Interface (allowing even larger adventures to be created), an extra disk drive and the SAM mouse If
they ars present.

If you bought your copy of SAS directly from AXXENT Software, then you will already have been
ragistered as a user, and entitled to free upgrades to any future versions of SAS that may be
produced, along with discounts on any future AXXENT software products. If you bought your copy of
SAS elsewhere, then it would probably be a good idea to fill in and send me the reglstration form
printed at the end of thie manual

Many thanks to the various people who cajoled me into writing SAS in the first placs, particularly,

Alan Miles (who will probably want me to re-write 89X of this manualll), Phil Glover, Dave Whitmars,
and Dave Ledbury.

If you have any suggestione or problems with SAS or its manual, then please let me know, as I am
always interested in hearing from budding adventure writers. Who knows, | may even be interested
in publishing your finished adventures|

I lock foward with enormous intersst to seelng SAS's great potential realised, and more adventures
appearing for the SAM Coupe, which with its large memory and fast processor, I have always felt
was Ideally suited to adventure playing.

Colin Jordan. 8th May 1992

{C) 1992 Copyright Colin Jordan/AXXENT Software.

First edition May 1992, All rights ressrved.

SETTING UP SAS

SAS is supplied ae a master disk without a disk operating system. Toc make a working copy of SAS,
you will need two FORMATted dieks with either SAMDOS 2.0 or MASTERDOS (you will need
MASTERDOS if you wish to use an external IMb memory Interface for increased adventure source
space) saved as the first file on the disk.

Next, copy all the files from your master disk onto one of the disks

If you have two disk drives fitted, type COPY "dlie" TO “d2;e"

If you only have one diek drive, type COPY "e" TQ "«" and swop disks as prompted.

You have now created a "Utilities" disk. It might be a good idea at this stage to label the disk ae such.

Now you will need to save some flles onto the second FORMATted disk. Insert the master disk back
into drive 1

If you have two drives fitted, type COPY “dL:7???EDITOR" TO “d2:e®

If you only have one disk drive, type COPY "7777EDITOR" TO “e" and swop disks as prompted.
vnvm;;mon. NAsLEpu‘JlfA
Take care to ensure that you type exactly four question marks in ths filename.

The second disk which you have just written to is your “"Editor” disk. Make sure that thie disk is NOT
left write protscted (you should not be able to see through the small square hole in the corner of the

disk), as the editor will need to use "epare” sectors of the disk as a temporary storagse spacs. Agaln, it
might be a good idea to label this disk as the “Editor" disk at this stage.

You should now remove yom;, master disk and keep it safe. Please do not use your master disk as a
working disk or for data storage.

You will now have two SAS working disks, The "Editor” disk contains the adventurs "source” editor
and should have around 714k of unused space left on the diek. Don't be tempted to use thie epacs for
extra files or data, as the editor requiree this space as a temporary etorage area.

The sscond "Utilities”™ disk basically contains "sverything else", It contains files such as the compiler
and graphic extension programs and the "START" and “SPAMCO" source files (more about these later).

This program took many months of hard work to write (I hope it showsi), and the price is vsry
reasonable, Please do not infringe my copyright by making illegal copiss of this syetem for your
friends, Instead, ask them to buy their own copy. Software piracy is ILLEGAL and only results in

fewer software companies and individuals being willing to develop new software products for the
SAM.

Of coursse, you ars perfectly free to market and distribute your completed adventures as you wish,
PROVIDED your softwars clearly states that it was written using SAS AND no part of the sditor
or compller i{s included with your software.

PLAYING THE DEMO ADVENTURE

By now, you're probably wanting to ees some of ths impressive rssults that can be achieved by using
SAS, so Inssrt your "Utllitiss" disk into drive 1 and typs BOOT 1 to install the DOS, and LOAD “DEMO" to
load the dsmo adventurs.

When playing, you'll notice that SAS will allow you to snter multiple commands. From ths initial
location (outside the SPAMCO bullding), try entering the following command line,

60 SOUTH., EXAMINE CAR. GO NORTH. NW. EXAMINE BINS.
SAS ie now able to dsal with each separate part of your input in turn.

You may entsr multiple commands by using either commas or full stops, but remember to includs a
spacs before the following word.

The words "AND", “THEN" and the ampersand character ("&") can be used in a similar way to
normal everyday English.

If you type ths input

EXAMINE THE CHAIR AND THE BINS

or

TAKE THE COFFEE THEN DRINK IT

SAS will know exactly what you mean and act accordingly.

While typing your commands, DELETE can be ueed in the normal way to delste the character to ths
left of the cursor, Pressing the EDIT key will bring back ths last command(s} you typed in. This can
be ussful {f you made a minor mistake last time that you wish to corrsct, or if you wish to repeat
your last input by preesing EDIT then RETURN.

Ths graphics in ths adventure are actually captured screens from SAMCo's Vidso Digitiser interface.

SAS will allow you to include MODE 3 or MODE 4 SCREENS files or FLASH screens for use as location
graphics in your own adventure.

The adventure source file for this demo adventurs is also Included on the "Utilities” disk under the
fillename of "SPAMCO" and is fully commented. Later on, you may find it interesting to load this source
into the editor (once you are familiar with how the editor works) and see how the adventure was
constructead,

PLANNING YOUR ADVENTURE

Before we look at how adventures are put togsther using SAS, it's worth mentloning how to plntjx
your adventure.

If you're new to adventure playing, you should know that adventures are in essence "interactive
novels”, allowing you ae the "player” to take part in the plot through your typed instructions on the
keyboard, It's very much like reading a book in which you are actually playing the part of cne of the
characters and are able to shape events in the adventure world as the story unfolds.

The computer printe on the screen detalls of your current location, what objects (if any) that you're
carrying and responses to any commande that you've typed in.

wos:mw
In the adventure environmant the player will often come across objects which might come in handy

to solve puzzles which the player will have to overcome later on in the game. An example would be a
key to open a lolcked door.

’%ti?kosmkfm eozhopﬂun
The immediate and most important task facing an adventure writer is declding upon the plot or
storyline behind the gams. It is ESSENTIAL that you do this before you start writing the game,
otherwiee you'll probably just end up with an incoherrent mess| (which is why I've placed this chapter
here at the beginning of the manual}. Where is the adventure to take place ? Perhape in the days of
King Arthur, or on an alien planet or maybe even in your own city or the Wild West. Thess are just a

few ideas, try to think of an original one for yourself. (if | had a pound for every adventure based on
a dungeons & dragons thems...)

Once you've decided whers to set the scene, you must decide what the object of the game s (otherwise
the player will just end up wandering around not knowing what hes supposed to dol). It could be to
find some hidden treasurs, solve a murder or gven eave the whole of mankindl Try to keep the aim of
the game consistent with the setting you've decided. {You wouldn't expect to find Long John Silver
locking for treasure on an allen planet for sxamplel)

You can't think of a good etory ? Then read. There are THOUSANDS of good ideas just perfect for
adventures in books. And If the story is out of copyright (if the book was first published over 75
years ago you'll be safe), then you'll be free tu use it or adapt the story for your own adventure. If the

book e not quite that old, then you'll have to “seek permission from the relevant publisher - be
warned, this can be very expensive Il

The next step to take ls to actually map out the iocations where you want your action to taks place.
Locations could be rooms in a building, caves or even a epace cutdoors. It's entirely up to you. SAS
allows you to define up to 255 different locations (which would make a very blg adventure indeedi),
but if you're just starting out, it's probably best to begin with just a dozen or so,

On ths next page is chart which you can uss to help map out and connect your locations. 1 suggest
you remove and photo-copy this page. If your adventure has a large number of locations, then you can
tape saveral photo-copies of the page together to make a large map. Each location on the chart has

possible connections for all eight major compass points. If you want to invent your own directions or
uss UP or DOWN, you'll have to draw these in yourself,

Often when deciding upon the individual locations, ideas for puzzles and starting locations for useful
objects will come to mind. Make a note of thess and jot them down on the map as well so that you
can Incorporate these ints your game later on.

When designing puzzles, think of how the player will solve them. Will he need to use any objects ? If
so, will he be able to pick up the objects and carry them around, or will they be set in one placs 7
(This distinction is important, as you'll see later when ueing the editor). Where will the objects be
found ? Are you going to give the player any clues on how to solve the puzzles ? If so how 7,
perhaps by reading a book found in a location for example.

Above all, what VERBS will the player need to type in, in order to solve the puzzles ? Make & list of
any suﬂf‘l’abla verbs (along with all the alternatives that you can think of) that you think the player
should use. Alsc make a list of all of the objects that you wish to include in your gams,

= £
=
=
£
i : g
y ﬁ
b
y ﬁ ;

LI TYTYTYITX X1 %

THE SOURCE EDITOR

Vyppto Uy
The source editor program ie where you'll s’{:/;;d most of the time developing your adventure, If you
have a SAM Mouss or a 1IMb memory interface, then connect theee to your SAM. Make eure you have a
blank formatted disk handy (with no DOS), and load up the "Editor” disk which you prepared earlier by
preeeing the F9 function key as normal.

After a short while, you will see the main menu as shown in Figure 1.

==

s n (A) ESCape button Sslect button

= (B] I
1 ===0—1(C)
Flg 1.- Tha Maln Manu screen Fig 2, - The Mouse controls

The section of the screen marked (A) in the figure is & bar menu, from where you may sslect which
component of the adventure you wish to edit. Try highlighting the various menu options by moving
the dark choice bar up and down using the CURSOR UP & DOWN keys. If you have a SAM Mouse

connected, you may also highlight the various options by moving the mouse up and down across a flat
surface.

Bar menu choices are sslected (don't select one yetl) by pressing the RETURN key, or pressing the
mouse "select” button as shown in Figure 2. To the far left of each bar menu option is a singls letter.
You may also directly eelect the option you require by preseing this key on the keyboard. Later on,
you will encounter other bar menus in various other gsections of the editor, All of them work on this
same principle,

The section of the screen marked (B] in Figurs 1 gives an indication of the amount of memory
available for your adventurs source. The number displayed s actually the number of bytes free. As
you define the various components of your adventurs, this figure will steadily decrease.

Section (C) is used to show which version of SAS you are using, and which eection of the editor you
are currently using.

Because you've just loaded the editor, most of the bar menu options will not work if you try to sslect
them. This is because at this stage, there is no adventure source defined in memory. The editor needs

to know whether you wish to create a complstely new adventure, or load one from disk which you
are already working on.

Select the bar menu option marked A Load Adventure Source. The screen will clear, and you will be
prompted to Insert your eource disk intc the drive. Insert your “Utllities" disk. Note that if you have

two disk drives fitted, the Source loading and saving optione ALWAYS requires you to place the
sourcs disk into drive 2.

Press a key. You will now see a directory on-screen with the filenames “SPAMCO.HDD" and “"START .HDD"
displayed. These are adventure source files which you can load into the editor and manipulate if you
wish. "SPAMCO" {s the escurce for the demo adventure on the "Utllities” disk, and the "START" file is a
starter flle containing a basic adventure framework which you can develop your own adventure from.

Type the name START in the entry box at the bottom of the screen (no need to add the "HDD" file
extension) and press RETURN. Once the file has loaded, you will bs prompted to insert your "Editor"

disk again (unless you have 1Mb interface connected or two disk drives) and you will return again to
the main menu screesn.

You will notice that the first four options on the bar menu are "banks" numbered from 1 to 4. It is In
these banks that you will define how the adventure actually behaves as it is being played. In these
four source banks you will be using a simple programming language specifically designed to make
adventure writing as sasy as possible. Don't worry too much about these first four optlons for now, as
you will learn how to uee this programming language later on.

The options available from the Main Menu are ae follows :

1 Source Bank (1)

o TREVOVVL PoRCE

2 Source Bsnk (2)

RERUCE VA Pty

3 Source Bank (3)

4 Sourcs Bank (4)
7\1'57‘/"1 oIV

¥ Vocabulary

M Mungu
HLMLM—

L Locatlons !
PATS WsYMOUL

B Verb Definitions

Lrovi =

0 Movable Object
Definitions

U Unmoyrble Object
Dafinltions

D Dirsction Dsfinltlons

A7
This section s used to define the state of the adventure at the start of the

game, It Is here that you would set up which location you start out in, where
any objects are located stc.

It is in this sectlon that you will specify how the adventure reacts to the
commands entered by the player. It is in this sectlon, that you will be defining
most of the puzzles in the game. In effect, it ia in this section that "high
priority" conditions (conditions that will be acted upon as scon as the player
has typed in a command) will be performed.

Thie section is ueed for "low priority" conditions. (Low priority conditions are
conditione that will be acted upon, once the "high priocity" have been dealt
with).

This is used for "local conditlons”. Local conditions will be acted upon when the
player moves to a new location.

In this section, you will define a vocabulary of words which the computer will
recognise when the player types in his commands.

EHI:M
This section le used to define all msssages that will be used during the game,

Messagss can be thought of as any text that will be printsd on the screen.

It is here that you will define the descriptions of the various locations in your
adventure, along with the varicus exits that connect the locations togsther.

This section ia used to define the names of the verbs you wish to use in your
adventurs, in cass you wish to include the name of a specific verb in a
messags.

t
POHIBLIYY
This eection is used to define the names of all movable objects that you wish

to include in your adventure, (Movabls objects are objects that you can
actually pick up and carry around with you).

It is hers that you will define the names of all unmovable objects that you
wish to include in your adventurse. Unmovable objects are objects such as trees
and doors, which obviously cannot be picked up and carried around, but which

the playsr might wish to intsract with in some way, for example climbing a
tree or opening a door.

This section is used to define the actual names of the directions which you
wish to use to connect your locations together.

C Crente New Adventure This option allows you to create a new completely new adventure
Source from scratch. If you're new to SAS, you'll probably want to adapt
your adventure source from the "START" starter flle instead.

A Load Adventurs Source This option allows you to load an adventure source into the editor.
We used this option a short while ago to load in the "START" starter
file.

S Save Adventura Sourca Thie option le used to save to disk the adventure scurce you're

currently working on. You can use this option to save a half-finished
adventure that you wish to complete later, or to save your source for

the compiler to convert into a runnable game that you wish to play
or test.

Creating An Adventure

To help guide you through using the sditor step-by-step, we'll create a very simple adventure whicn
is mapped out in Figure 3.

Locatlon (1) Location (2) Locatlon (3)

By the fountain B Inside the park Outside the
park

Fig 3. - "Park” Advanture map.

The aim of the game will bs to escape from the park to location number (3). Initially the player will
not be able to go East from location (2) because the way will bs barred by the park gates which ars
closed and locked. To get past the gates, the player will have to examins a fountain in location (1),
find a key hidden there and unlock the gates with it.

The "START" starter file which we have loaded, already contains the following verbs:

(1) LOAD (S) Quit (9) TAKE

(2) SAVE (6) SCORE {10) DROP
(3) RAMSAVE (7) INVENTORY (11) EXAMINE
(4) RAMLOAD (8) LOOK

In addition, we will need to dsfins the following new verbs :

{12) UNLOCK {to unlock the gates with the key).

(13) OPEN {to open the gates once they are unlocked).

Alsc included in the "START" file are the following directions :

(1) NORTH (S) NORTHEAST (9) UP
(2) SOUTH (6) NORTHWEST (10) DOWN
(3) EAST (7) SOUTHEAST

(4) WEST (8) SOUTHWEST

As we'll only be actually using EAST and WEST In our short adventure, there's obviously no need to add
any extra direction names.

The "START" file contains no definitions for any movable or unmovable objects.

We'll need to define the single movabla object :

(1) GOLDEN KEY (to unlock the gate with)

And the following unmovable objects ;

(1) FOUNTAIN (where the key is to be hidden)

(2) GATES (Which will have to be opened and unlocked for the player to escape)

Entsring Locations

To begin with, we'll define the three locations that will be used in our short "Park" adventure.
Select the option L Locatlons from the main menu.

A smaller bar menu will be displayed with the following options :

B Browse Locatlons This option is used to look through the locations that have already been
defined.
E Edit Locatlons This option is used to alter locations that have aready been created, or

to create new locations.

P Print Locatlons This option can be used to send to a printer (if connected), the
decriptione and exit details of any locations you have defined.

M Return To Main Menu As your've probably already guessed, this option will leave the locations
section and return you to the editor main menu.

10

Select option £ Edit Locatlons from the menu. You will now be prompted to enter the number of tha
location you wish to alter. You can enter any number bestween 1 and 255 {the maximum number of

locations allowed). Type 1 to edit locatlon number 1 and RETURN. The scrsen will clear, and after a
short moment, you will see the location editing screen as shown in Figure 4.

| Location + 1 |
: 3z a2 |
42|85 32} 42 | I)
|]
32 | 42 | |85
L]
42 | az| 42| |ss
L]
L_Exlts Tabls |
SMERY
wde. D OOOOOOOOG 8)
adng o [JC I CICACI A3 ()

Filg 4. - Tha locatlon aditing scrsan.

The section of the screen labelled (A) in Figure 4 is used to hold the actual description of the location.
There are four entry fields used to hold the description text, each 64 characters long. In the first field,

you will notice the text “This Is ths Initlal locatien.”. This is a default description of location 1 which is
supplied In the START starf.ar file.

Directly above each description field, you will notice numbere marked off at various points along the
field's length. These are used to indicate the end of the text row when the description is printed on
the screen, depending upon the column mode the adventure is using. SAS supports four different
column settings 1 32, 42, 64 and B85 columne. For our short "Park" adventure, we will be using 64

column mode, so sach of the four description fislds will represent exactly one row of text printed on
the screen.

A cursor will be positioned at the first character of the top description field. You may move the
cursor around ‘i_:}}e text ueing the CURSOR LEFT and CURSOR RIGHT keys, Now movse the
cureor to the nlddle of the text and press F2, This key can be used to insert a space in the field.
Move the cursor to just past the end of the text and press DELETE until all the text hae been
deleted and the cursor is back at the first character position of the first field.

We are now ready to enter the description of location number 1 Type in the following text :
You ars In & quist corner of the park. Nearby is a fountain,

Prees RETURN four times to skip past the remaining description flelds. You should now be in the
section of the screen marked (B) in Figure 4.

The flelds located in sections (B} and (C) of the screen are used to define the exits (if any) available
from the location currently being edited.

The fields in section (B) are used to define the direction numbsrs of any directione leading away from
the location, There is only one exit from location 1, so type 3 (for direction number 3 - East) and press
RETURN. Your cursor should now bs in a fisld directly below, in eection (C) of the screen.

The flelds in section (C) are used to specify which locations the exits actuwally lead to. Location
number 2 {8 Eaet from location 1, so type 2 and press RETURN.

11

The screen should now look like the one

shown in Figure S.

] Location : 1]

32 | a2 |

| You are In 8 qulat corner of the park. Nearby Is s fountaln. |

42 1|85 32 | 42 |

L d
32_| a2 | |85

L]

42 | 32 | 42 | |85
|]
| Exits Tahble I
Directlon :

B O0O00O0000O
wmang o0 ZA OO0

Flg 5. ~ Locatlon data for locatien 1,

Keep the BETURN key pressed down to skip past the remaining exit table fields. You will now bs
asked

Is this correct ? (Y / N)

If all's well, Type Y, otherwise type N then ESC to return to the locations menu and try entering the
location data again.

Now press CURSOR RIGHT to step to location number 2. Enter the following location description :
Yeu are Inslde the clty park. |t Is very gqulst hare.
and the following exits :

3 leading to 3
4 leading to 1

Once you have confirmed all is correct, step to location 3 (using CURSOR RIGHT again) and enter
the following location description :

You ars outside the park gates.
and the exit :

4 leading to 2

Once you have confirmed all is correct, press ESC (or prees the ESC mouse button) to return to the
locations menu.

We can now inspect all three locations we have just entered by selecting the option B Browss
Locatlons from the locations menu. Use CURSOR LEFT and CURSOR BRIGHT to step backwards
and forwards through the location definitions (although locations numbered 4 upwards should be
blank). When you've seen enough, prese ESC to return to the locations menu, and select the option M
Return To Maln Menu to return once again to the editor Main Menw

12

Defining Maessages

Next, we will define the various messages which contain the text that will be printed on the screen at
various points during the "PARK" adventure. The actual messages can be whatever you like - a response
to something that the player has just done, a welcome message at the start of the game, or even a
detailed description of one of the objects in the adventurs.

Select the option M Maessages from the editor main menu
A smaller bar menu will be displayed with very simllar options to the menu we saw when defining
the locations le., Browse, Edit, Print and Return To Main Menu.

The "START" starter file already contains 16 messages which are used for various purposes common to
most adventures. To look through these, select the option B Browse Messages from the messsges bar

menu. You will now be prompted to enter the number of the message which you wish to start looking
from. Typa 1 and press RETURN.

you will now see the defined text of message number 1 on screen. You will notice that the message is
displayed in four entry fislds, each 64 characters long, in exactly the same way as the location
descriptiona when we were defining locations earlier. Of course, there is no exit table information
needed for messagesl

we can now inspect all of the other defined messages by using the CURSOR LEFT and CURSOR
BIGHT keys to step backwards and forwards through the other messages (although messages

numbered 17 upwards will be blank). When you've sesn enough, press the ESC key (or the mouse ESC
button) to return once more to the messagas menu.

we will now add the extra meseages that will be required by the "PARK" adventure. Select the option E
Edlit Massages from the bar menu. You will now be prompted to enter the number of the message that
you wish to alter. You can enter any number between 1 and 1024 (the maximum number of messages
allowed). Since we'll be adding our new messages to the end of the ones supplied in the START starter
file, type 17 (to start editing from message number 17) and press BETURN.

As when editing location descriptions, a cursor (displayed as an underline charactar) will be positioned
at the first character position of the first of the four entry fields. Now type in the following text for
message number 17 :

Hidden In the fountsin, you dlscover a goldan key |
Again, as when typing In the location description text, the CURSOR LEFT and CURSOR RIGHT
keys can be used for moving the cursor around the field, the DELETE key can be used to delsta the

character to the left of the cursor, and the F2 key will insert a space at the current cursor position.

As you will have probably guessed, this i the message that will be printed once the player has
EXAMINEd the fountain and found the golden key hidden thers.

Now press RETURN (four times) until the cursor has gone past the last text field. You will now be
asked

{s this correct ? (Y / N)

Provided you have typed sverything in correctly, press the Y key (no need to press RETURN)]),
otherwise If you see you have made a mistake somewhere, type N then prsss the ESC key to return
to the messages bar menu, and try entering tha meesage data again.

Now press the CURSOR RIGHT key to step to the next message - message number 18. For this
message, type in the following text :

Tha gates ars currently closed and lockad.

i3

This messags will be printed |f the player EXAMINEs the park gates befors they have yet been unlocked
and opened.

As before, once you have typed in the text, press the RETURN key until the confirmation prompt
appears asking if all is correct. Again, press Y followed by the CURSOR RIGHT key to move on to
the next message (message number 19). For this message type in the following text .

The gates are closad.

This message will be printed If the gates are examined after they are unlocked, but befors they are
open.

Again, confirm all is correct and move on to message number 20 :

The gates are now opan.

As you've almost certalnly guessed, thie message will be printed if the park gates are examined after
they have both been unlocked and opened.

Now define message number 21 as :
You have no kay |

This is an "error" message which will be printed if the player tries to unlock the park gates without
actually carrying the golden key with him.

Message number 22 is defined as :
Tha gates are alraady unlocked |

This is another “error” message that will be printed if the player tries to unlock the gates after he has
already unlocked theml

Message number 23 is defined as :

You unlock the psrk gates with the golden kay.

This is a message that will be printed when the player has successfully unlocked ths ‘gates.
Message number 24 is defined as :

In valn you try to opan the gatas, but they are securaly lockad.

This message is printed if the player attempts to open the park gates without unlocking them first.
Message number 25 is defined as :

The gates are airesdy open |

this is another “error” messages which will be printed if the player attempts to open the park gates
after he has already successfully opened theml

Message number 26 ls defined as :
With e loud creak, the gatas slowly swing open.

This is a message which is printed when the player has been successful In opening the park gates
after they have been previously unlocked.

14

sadg2 saomocer JU .8 aerined as

CONGRATULATIONS you have ascaped from the park -
Prass sny key for a naw gama,

This message will be printed at the end of the game when the player has escaped from the park.

This message Is different from the others we have defined so far - it will ba printed on twao
consecutive text lines. To define this, type the text

CONGRATULATIONS you have now ascapad from the park -

and press BETURN once. The cursor will now be positioned at the start of the second entry fleld
(remember sach entry field is 54 characters long, and we have already decided that the PARK
adventurs will use the 64 column text mode - If we were using 42 column text mode instead, we

would have moved the cursor to the next "42" column marker). Now type in the second text line of the
messags !

Prass sny key for a naw gama.

Now press RETURN until you see the normal confirmation prompt, and move on to the next message
in the normal way.

Message number 28 is defined as :

You try to go East, but your way s barred by s psir of
rustly looking park gates.

This {8 another message printed on two lines, and will be printed If the player attempts to go through
the park gates without first unlocking AND opening them.

This is the last message needed for the adventurs, ao after you have typed Y, instead of moving on to
message 29 by pressing CURSOR RIGHT, press ESC Instead to return back to the messages bar
menu (If you have already moved on to message number 29 by mistake, don't worry - simply press
BETURN until you reach the confirmation prompt, type N and then press the ESC kay).

As we have now finished defining the messages, selact the option M Return To Maln Menu. The

messages that we have just defined will be stored, and we will be returned back to the editor main
ment.

15

Dsfining Movablae Objacts

Next, we'll define the single movable object we'll be using in our "Park" adventure, object number 1, the
golden key.

Select the option 0 Movable Objact Definltlons from the editor main menu.

A smaller bar menu will be displayed with very similar options to the menu we saw when defining
the locations ie, Browss, Edit, Print and Return To Main Menu.

Select the option E Edit Movabla Objects from the menu. You will again be prompted to enter the
number of thea movable object you wish to alter. You can enter any number between 1 and 255 (the
maximum number of movable objects allowed), although since we only have a single movable object in
our "Park” adventurse, type 1 (to edit movable object number 1) and press RETURN. The screen will
clear, and you will now ses the movable object editing screen.

There are only two entry flelds on this screen. The cursor will be positioned in the first fleld near the
top of the screen. This field is 1S characters long and is used to hold the name of the movable object.

Type
goldan kay

and press RETURN. The cursor will now be positioned in the single character field directly below.
This fleld is used to define a prefix which will be added to the beginning of the movable object’'s name
when printed on screen, enabling longer movable object names to be defined. There are four prefixes
available, depending on which character is entered in this field -

A adds the prefix "A " to the movable object name

N adds the prefix "An " to the movable cbject name

S adds the prefix "Soma " to the movable object name

T adds the prefix "Ths " to the movable object name

A space entered in this fisld will result in no prefix being added to the movable object name

The golden key will have a prefix of "A ", so type A (no need to press RETURN in this fleld) We
have now ensured that whenever the name of movable object number 1 is printed in our adventurs,
the computer will print "A golden key". Ae when editing locations, you will naw be asked

Is this corract 2 (Y / N)

If you'rs happy with what you've just entered, typs Y, otherwise, type N then press ESC to return to
the movable objacts menu and try entering the movable object data again.

If we had more movable objects to define, we could now ues CURSOR BRIGHT to step to the
definition of movable object number 2 in the same way as we did when defining our locations earlier.
Howaever, as we've now finished our movable object definitions, press ESC {or press the ESC mouse
button) to return to the movable objects bar menu.

As before, we can now inspsct our movable objects by selecting the option B Browse Movabla Objects
from the movable objects menu. Again, CURSOR LEFT and CURSOR RIGHT can be used to step
backwards and forwards through the movable object definitlons (although movable objects numbered 2
upwards should be blank]). When you've seen enough, press ESC to return to the movable objects
menu, and select the option M Return To Maln Menu to return once again to the editor main menu.

16

Dafining Unmovable Objacts

Now we'll define the two unmovable objects in our "Park” adventure | unmovable object number 1, the
fountain and unmovable object number 2, the park gates.

Select the option U Unmovabla Objact Daflnitions from the editor main menu.

A smaller bar menu will be displayed with the usual four options : Browse, Edit, Print and Beturn To
Main Menu. (All this should seem quite familiar by nowl)

Select the option E EdIt Unmovable Objects from the menu and sslect unmovable object number 1 for
editing.

There is only one entry fleld on this editing screen. This as you might expect, 1s used to hold the
name of the unmovable object.

Type
stone fountaln

and press RETURN. The normal prompt asking you whether the data is OK will appear. Type Y and
move on to define the next unmovable object definition :

rusty gstas

and return once again to the editor main menu.

Defining Verbs

As mentioned previously, the START starter file we have loaded contains 11 verbs already defined.

However, for our "Park” adventure, we will need to add two extra verbs - verb number 12, UNLOCK and
verb number 13, OPEN.

Select the option B Verb Dafinitlons from the meain menu. Another bar menu with the ueual four
options will be displayed.

Select the option E Edit Verbs from the menu. As we will start adding verbs from verb number 12,
type 12 and press RETURN.

Again, thers is only one field on this entry screen. This is used to hold the "name" of the verh.
Type
unlock

and press BETURN. The normal prompt asking you whether the data is OK will appear. Type Y and
move on to define the next verb:

open

and return once again to the editor main menu.

17

Safining Tlrsctions

The START starter file already contains most direction names that you're likely to want to use in your
own adventures. You probably won't want to define any new directions yourself unless you are

inventing your own complstely new direction names, or if you're developing an adventure source from
scratch without adapting it from the START starter file.

Direction namss are defined in exactly the same way as objects and verbs (select the option D
Diraction Daflnitlons from the editor main menu), although the maximum number of direction namss
that can be defined is 99 (movable objects, unmovable objects and verbs may have a maximum of 255

definitions) - It 18 most unlikely that you will want more than 99 different direction names in your
adventures!

Our "Park" demonstration adventure will not require us to define any new direction names, as the
START starter file already contains definitions for the two directions that we will be using ("EAST" and

"WEST"). Feel free to look through any of the direction definitions using the "Browse" option from the
directions menu if you wish.

It is important to realise that we have so far only defined the NAMES of the objects, verbs and
directions that will be used in our "Park" adventurs. The Interpreter would still not understand the

words "FOUNTAIN® or "KEY" if we included them in our typed-in commands when playing the adventure
game.

We still need to give the interpreter a rudimentary knowledge of all the important words that a

player is likely to use when playing our "Park" adventure. To do this, we will need to define a
VOCABULARY for our game...

Defining A Vacabulary

The VOCABULARY section of the editor is whers we define all the words that the interpreter will
recognise when instructions are typed in by the player when playing the game. It is by defining worda

in this section, that we can make surs that the interpreter actually "understands" what the player has
typed Inl ‘

In the vocabulary, all words are categorised into five separate "classes”) Directions, Verbs, Movable
Objects, Unmovable Objects and Prepositions.

Directlons Theee words are ths directions that we are using to connect locations together, eg.
NORTH, SW stc.

Varbs These words are the verbs used in our adventure such as TAKE, DROP etc. Game
commands such as SAVE, RAMLOAD etc are also classed as verbs,

Movable Objscts Theee words correepond to any movable objects defined in the adventurs.
Unmovable Objects These words correspond to any unmovable objects defined in the adventure.

Prapositions These are wordse that can be used to alter the meanings of verbs such as [N, 0UT,
ON, OFF stc. Consider as an example the Inputs 6ET IN BOAT and GET QUT BOAT,

which although contain the eame verb {"6ET") and unmovable object ["BOAT")
obviouely have different meanings.

18

Each “class” may contain up to 255 words, and each word may have up to 255 synonyms (synoyms are
different words with the same meaning).

Select the option V Vacabulary from the editor main menu. You will see the vocabulary editing screen
as shown in Figure 6.

EUMP [EMARK [ARK [ORDS—— ()
(A) PR Remack ! aoPARK.UOCHS (D)
iiees tinns ¢
“NORTH"
“SouTH:"
IIE“SIE"
"ur:sTE

B nyn
(B) "MORTHEAST"

L]
Line No. 1 L] I]

Flg 6. - Tha vocsbulary editing scraan.

The entire vocabulary ie stored ae long list of words each on its own line. This list is always shown
and manipulated in the area of screen marked (D) in Fig. 6. The curgor marked (A) in Fig, 6. is used
to point at the place in this list where we may want to delete, add or altsr lines.

Move the list down one line by using the CURSOR DOWN key. You will notice that the area of
screen marked (B) in Fig. 6. now shows that the cursor is pointing to the second line in the
vocabulary listing. Press the CURSOR UP key to move back up to line number 1. If we want to

move up or down the listing more quickly, we can use the F1 and FO function keys which will move
the listing up and down 10 lines respectively.

If you have a SAM Mouse connected, you will notice a small pointer somewhere on the acmeﬁ. By

moving this pointer to a line in the listing and pressing the SELECT button, we cen bring any line we
wish directly to the cursor. This can be handy for moving up and down the listing quickly.

As the vocabulary Is stored as one long liet, we obviously need to merk in some way where one
“class" of words ends and the next begins. Line number 2 is currently a marker indicating the start of

the direction words. You will notice that this marker is displayed in INVERSE (le. PAPER on PEN) so
that it stands out quits clearly.

The first word after the marker Is "NORTH", As it 1s the first word in the directions section, it will be
recognised as direction number 1 if the player types this word in his commands when playing the
adventurs. The next line down le a SYNONYM of directlon number 1 - "N". We can tell it's a synonym
becauss it is justified to the right. Remember, synoyms are alternative words that we wish to have
exactly the same meaning. So in this case, If the player typed in EITHER “NORTH" or “N" in his
commands, the interpretar would recognise the word as being direction number 1. As mentioned
previously, each word can have up to 255 synoyms, so it's probably best to enter as many as you can
think of when deelgning your own adventures, so that they are as friendly as possible. Nothing is
worse than having to search for an obscure word in order to solve a problem when playing a gamael

The next line down showing the word "SOUTH" (line number 5), is justified back to the left again. This
indicates that it is a new word rather than ancther synoynm of the word "NOR'TH", This word

would be recognised as direction number 2 If the player included it in his commands when playing the
adventure.

19

The START starter flle already has a small vocabulary supplied which corresponde with the existing
definitions for directions and verhs, along with a few common prepositions. At the moment, there ars
no words defined in either the movable or unmovable object “classes",

At the top of the screen In the section marked (C) in Fig. 6, you will notice the words JUMP, REMARK,
MARK and WORDS. These are titles of ssveral bar menus which can be accessed in order to edit the
vocabulary.

Press the CURSOR RIGHT ksy. You should now see the "JUMP" bar menu on-screen. By using the
CURSOR RIGHT and CURSOR LEFT" keys, we can move across the screen highlighting ths
various bar menus which are available. press the ESC key (or ESC mouss button) to remove the
currently selected bar menu from the screen.

If you're lucky enough to own a SAM Mouse, you may selsct a bar menu by moving the mouse pointer
up to the title of the bar menu you require, and pressing the mouse SELECT button.

Bar menus may also be directly selected by pressing the key which corresponds to the letter
highlighted in the bar menu title. Press the J key. The "JUMP" bar menu will again be selacted. As you
have probably guessed, this menu allows us to jump directly to various points in the vocabulary list.
gelect the option ¥ Jump To Verhs. The cursor will now be pointing to a marker (in inverse) which
defines the start of the verb words in the listing. The options D Jump To Diractlons, or P Jump To
Preposltions can alsc be used in the same way to jump to the appropriate markers in the vocabulary
listing. However, trying to jump to either the movable or unmovable markers will result in an error
message being displayed because at the moment these markers do not yst existl

Select the "JUMP" bar menu again, and this time select the option L Jump To Line Number You will now
be prompted to enter the numbsr of the line you wish to jump to. Type 1 and press RETURN. The
cursor will now be positioned back at line number 1 in the vocabulary list.

We will now enter the vocabulary entries corresponding to the movable object (the golden key) which
wa defined earlier. The first step to take is to insert a movable objects marker in our listing. Select the
"MARK" bar menu and sslect the option M Mark Movable Objscts. You will now be asked

Iz thizs correct ? { Y / N}
Remark 1esSTART.HOCHn

flasalds MLkt

Type Y (no need to press RETURN), and the marker should be ' ;
inserted ae line 2 in the vocabulary. Your lleting should now look like "HORTH"

the one shown {n Figure 7. "SUU:I: :: Fig. 7

Next, select the "WORDS" bar menu, and chooee ths option N New Word. you will now eee an entry
fleld 15 charactsrs long. Type in the word KEY [it will be forced into upper-caee, don't worry about
thie) and press RETURN and the Y key to confirm all is correct. We have now defined movable
object number 1. We will now add a synonym to this word. Select the "WORDS" bar menu again, and

this time select the optlon S Synonym Word. Now type in the word GOLDEN and press RETURN and
Y as befores.

Remark 1aaSTART.NOC s

) DO A S T S
E]llll
“GOLDER"

The listing on screen should now look like the one shown in Figure 8. HUH'T'H“ Flg. B.

Next, ws will inssrt the unmovable cbjects in a similar way. Firstly, select the “"MARK" bar menu and

chooee the U Mark Unmovable Objects option. confirm all is correct, and the unmovable objecte marker
should be inserted as line number 5 in the listing.

20

Now enter the word FOUNT AIN as the first unmovable object word
with the synonym STONE. The next unmovable object word is to be

Re '
GATES with the synonyms GATE and BUSTY. The start of our DL LA ST HRT V0C e
vocabulary listing should now look like Figure S. "HE

Note that we have entered the unmovable cbjects in the same order as
we defined thelr namaes earlier. IT IS ESSENTIAL THAT THIS
IS DONE, If we had entered the rusty gates in the vocabulary lleting GRTE"

before the stone fountain, we would have had very funny results when RUSTY™ Flg. 9.
playing the finished adventursl

Now all ws need to do, is to add the extra verbs “UNLOCK" and "OPEN", We could jump directly to the
verbe marker in the vocabulary list by ueing the option V Jlump To Verbs in the "JUMP" bar menu,
but since we know that the last verb defined so far le "EXAMINE" (verb number 11), we can jump
directly to thie word instead. Selsct the optlon W Jump To Word from the "JUMP" bar menu. You will
now be prompted to enter the word which you wish to jump to. Type the word EXAMINE and
prese RETURN., The cursor should now be pointing at the appropriate word in the listing, This
feature can be very handy indeed for moving around the vocabulary quickly If ws know of a word
located near the point where we wish to start editing.

Move the cursor two lines further down the list by prsssing the CURSOR DOWN ksy twice. The
cureor should now be pointing to the the sscond synonym of the word "EXAMINE" - "EXAM", We ars
now at the correct poeition to enter our two new verb words, "UNLOCK" and "OPEN". Enter both of
these as “new" worde (neither need have any synonyms). Again, take care to ensurs that the word
"UNLOCK" ie entered first, as we defined this as the name of verb numbsr 12 earlier, and "OPEN" as
verb number 13,

This is all very wsll, but how do we delete or change a line if we have mﬁdé a mistaks ?

Press the FO function key to move the cursor to the very end of the vocabulary. It should now be
pointing to the last preposition defined - "AT". Now select the option R Remark from the "REMARK"
bar menu, You will be prompted to enter soms text into an entry field on the screen. Type the text
SAS and press BETURN. The remark will now be inserted at the very end of the vocabulary list.
(Remarks are used to simply comment a section of the vocabulary listing for your own reference -
they have no effect at all on the vocabulary as it is compiled).

Now press the ESC key (or the ESC button on the SAM Mouse). A new bar menu will appear in the
middls of the screen with the following optione available |

A Add Line This optlon forces the cursor into "Add line" mode. While in this mode, a
letter "A" will be positioned by the cursor (at (A) in Figure 6.), and all lines
entered will be INSERTED at the current cursor position. The cursor is
antomatically set to "Add line” mode when you first enter the vocabulary
section from the editor main menu.

C Changs Line This option forces the cursor into "Change line" mode. While in thie mods, a
letter "C™ will be positioned by the cursor, and all lines entered will
OVER-WRITE the current line rather than insert a new lins at the current

line position. The firet time that this option is eelected from the bar menu, the

current line will be displayed, allowing you to edit or amend it. The cureor
remains in "Changs line® mode until the option A Add Lins ie selected from
this same bar menu.

D Daiste Line This option wiil delste the current line pointed to by the cursor. Befors
delsting the lins, you will be prompted for confirmation - just in cassl It is

Impossible to delete line number 1 in the vocabulary llet (a REMARK), as this is

used by the editor for reference purposes.

21

0 Count Current Word This option can be used to count how far the current word pointed to by

the cursor is In its "clase” (very handyi). A suitable error mssesags is
displayed if the cursor {s currsntly pointing to a "claee” marker or a
REMARK lins.

L List Vocabulary This option allows you to list a section of the vocabulary onto the screen.
When selecting thie option, you will be prompted to enter the line numbsrs
where you wish the listing to start and end. While listing, the number
displayed at the far left le the line number, while numbers shown in
brackets are the word's item numbsr in the current "class".

P Print Vocabulary Works exactly the same way as above, but the listing Is sent to a printsr
Instead of the screen.

M Raturn To Maln Manu This option returns you back to the editor Main Menu.

To alter the text in the REMARK line we've just added, press ESC to bring up the options bar menu
(If it ien't already dieplayed) and eelect the option C Changs Line. The remark entry fileld will be
shown on the screen containing the text "SAS" which we entered earlier. To change the remark text
simply type somsething different over the exlieting text and prees RETURN. You may move through
the fleld by ueing the CURSOR LEFT and CURSOR RIGHT keys if you wish.

Type Y to confirm all is correct, and you will now ses your amended REMARK line in the vocabulary
liet. Note that the cursor is still in "Change line" mode - thers ie a letter "C" dieplayed by the cureor.
If we were now to add a nsw lins, for example by adding a “new” preposition, it would over-write our
REMARK line rather than being inserted just after it. If we wished now to Insert a new vocabulary
line, we would have to bring up the options bar menu (by preseing ESC) and select the option A Add
Lins to put the cursor into "Add line" mode first.

Now let's delste our REMARK line, by preeeing ESC to bring up the options bar menu, and selecting
the option D Dslste Line, Type Y and press RETURN to confirm that we do indeed wish to delste
the line. The vocabulary listing will now be displayed on the screen with our deleted line removed.

Finally, to leave the vocabulary section of the editor, press ESC to bring up the optione bar menu
again, and sselect the optlon M Rsturn Te Maln Manu to return once more to the editor main menu.

When a player types in a command when playing an adventurs, the Interpreter firstly splits up the
Input into ssparate words and searches through the vocabulary looking for a match for sach word, If
no match is found, then the word is in effect completely ignored. Thie saves ue the rather tedious
chors of having to define silly words such as "a” or "the" in the vocabularyl

Depending upon in which “clase” the match was found, the interpreter knowe whether for example,
verb number 5, or direction number 2 was mentioned by the player. Later on, you will learn how to
use this information to allow the player to perform various actions and solve the adventure's puzzies.

Note that it doesn't matter in which order the various "claeses™ ars marked in the vocabulary listing.
The compller automatically eorts out the classes for you when it complles an adventurs source.

22

Saving Adventura Sourcs To Disk

Now might be a good time to save our uncompleted "Park" adventure source to disk. It is generally a

good idea to save your progress regularly when creating an adventure source - you never know when
you're likely to have a powar-cut |l

Make sure you have handy the blank formatted disk mentioned at the start of this chapter - (this will
be your “"source" disk, used to stors your "Park" adventurs source), and select the option S Sava
Adventura Source from the editor main menu. You will now be prompted to enter a fllename in a field
near the bottom of the screen. Note that this fleld already contains the fllename "START" becauss that
wag the name of tha fila we loaded earlier. Type PARK over the existing filename (using a space to
over-write the old "T"). UNLESS YOU HAVE A 1MB MEMORY INTERFACE CONNECTED,
MAKE SUBF YOU STILL HAVE THE "EDITOR" DISK INSERTED IN DRIVE 1. Now
press the RETURN ksy. The editor will load in some files from the drive, and after a short while
will prompt you to insert your "source” disk. Bemember, if you have two drives fitted to your SAM, the
editor always expects the "source” disk to be in the right-hand drive - drive 2.

Note that when saving very large sourca files, If you only have a single disk drive and no 1Mb memory
Interface, you may be prompted to swop between your "source" and "editor" disks several times. Just
follow the on-scresn prompts and Insert the disks as directed.

After the file has been saved, you will be prompted to insert your editor disk again, and you will
return back to the editor main menu.

As a general rule, it's not a good idea to store more than one adventure source file on the same disk

(or anything elsse for that matterl). This is because the editor ALWAYS expects the full 780k on the
disk to be avallabls for data storage.

You might now wish to compile ths "Park" source as it now stands, and see how the adventurs plays
go far. If you wish to do this, refer to the next chapter "The Saurce Campiler” on how to
compile the adventure source and play the adventure. When playing, you will notice that you will not
be able to "do" very much apart from wander around the various locations. To make our adventurse
interact with the player's commands, we will have to use SAS's special programming language ta
write some simple routines which will evaluats and act upon any instructions given by the player, and
alsa to control the various svents and puzzles which will be found in our adventurs world.

When you've finished wandering around the park (and not doing anything in particularl) re-load the
SAS editor disk and load back in the "PARK"™ adventure source from your "source" disk.

The sourcs banks

You will have noticed from the editor main menu, that there are four source "banks" available, The

SAS programming language is used to write routines in each of these banks which control how the
adventure bshaves as it is being played. .

Each of these four banks has a distinct purpose .

Source Bank 1 This bank countains routines which define the initial state of the adventurs world
at the start of sach new gams. The routines located in this bank are ONLY
executed when a new game is bagun. It is therefore, in this bank that you would
define the location number which the player starts out in, where any movabls or
unmovable objects are to be found In the advsnture world and the initial valuee of
any flags (more about flags later) that you may wish to use.

23

Sourcs 3ank 2

Source Bank 3

Source Bank 4

This bank Is used mostly for routinas which avalute what tha player has typed
In his input, and sct accordingly. The routines In this bank are executed as soon
as the player has finished typing in his commands, and has pressed the
RETURN ksy. At this point, the interpreter knows what directions, verbs,
movable objects, unmovable objects and prepositions (If any) that the player has
menticned {n his input. The routines in this source bank can be thought of as
"high priority" conditions.

Thie bank s used for routinee which will be executed regardless of whatever
commands the player has just typed in. As an example, thie would be the ideal
place to locate a routine which would make the player feel "hungry" after a
certain number of turns. The routinee in this source bank will be executed after
those in ecurce bank 2 (assuming that a JUMP TO END source command has
been used - more about this later). They can therefore be thought of as "low
priority"” routines.

This bank s used to contain routines which will be executed ONLY when the
player has moved to a new location. These routines will be sxecuted after those
in bank 2, and before those in bank 3 (provided a JUMP TO END source
command is used). It is in this bank that routines will be located to describe the
"new" location that the player has just moved to, for sxample,

QuUIT

(Begin new game)

SOURCE BANK 1

Initialisation routines

1

JUMP TO INPUT
(Get playsr's 1nem: command }

SOURCE BANK 2

1
"high priority” conditions MOVE ToO

SOURCE BANK 4

"local” conditions

JUMP TO END

SOURCE BANK 3

"low priority" conditions

Flg. 10. - Source banks flow-chart.

24

Tha SAS Programming Language

Routines in each of tha four source banks are stored and edited as a list of commands, with each
command having its own new line. Each of the four banks may contaln up to 4096 command lines
(available memory permitting) which ehould be more than adequate for most of the routines which
you're llkely to want to write.

Altogether, there are about 70 different commands (these are all listed in detail in the appendix near
the end of this manual), although you will probably not use some of them very often (If at alll}.

As an example, consider the command PRINT MESSAGE which we would use If we wanted to
print some text onto the screen during the game. The text could be anything - a response to something

the player has just done, a welcome message or even a detailed description of one of the objects in the
adventurs.

As there are up to 1024 differsnt messages available, we obviously have to specify which one we want
to use. we do this by adding to the command what is known as a PARAMETER. In this caes, the
parameter ie a numeric expression which gives the value of the message number we wish to use. The
numeric expression could be just a simple number, or a more complex numeric expression. SAS allows
the use of addition, subtraction and various numeric functions (you'll learn about these later) to be

included in any numerical parameter required by a command. This flexibllity makes the SAS
programming language very powerful indeed.

To illustrate this, suppose we wanted to print message number 10. If we used a simple number, the
command would appear as :

Print Messagas [10]

(Note how the paramster always appears within square brackets). Altarnatlvaly..wa could have printed
the same message (message number 10) by using the command like this :

Print Massagas [9+1]
Or if we were feeling particularly obtuse .
Print Message [12-10+6+2+1-1]
Which (bselisve it or not) would have had ths same sffect!

If we wanted to print several messages, one after the other, we would simply use the PRINT
MESSAGE commands consecutively in the listing. For example :

Print Messaga [11]
Print Message [12]
Print Mexsage [13]

Which as you would expect, would result in message number 11 being printed on the screen, followed
by messages 12 and 13.

If you're used to programming in BASIC, you might have noticed that the SAS language does not use
line numbers for gach line. If we wish, we can use what {s known as a LINE LABEL to give a nams

to a certain point in our "program"” listing. Line labels can have names up ta 8 characters long and
would appear in a listing like this

LINE.LAB:
Print Message [10]

In this cass, the line label's name {8 "LINELAB". Line labels always have thelr namss displayed in upper
case and have a colon character (:) added to the name. Note that the line label itself is justified to the

left of the listing. This makes it stand out and easy to spot when looking at a listing with a large
number of control lines.

25

We can force a jump to a different point in the program by using the GOTO command. Note that
unlike BASIC's GOTO command, GOTO requires you to specify a line label instead of a line number to
jump to.

Example

Print Message [10]

Goto JUMP

Print Maessage [11)]
JUMP:

Print Massags [12]

If we wers to use the above routine, message 10 would be prixitad. but the GOTO command would
force a jump past the PRINT MESSAGE command printing message 11 (which would not be printed)
to the line labsl "JUMP", and meassage 12 would then be printed.

Sometimes, we will only want a command executed in certain circumstances. For commands to be
executed conditionally, we can uee one of the various IF.. commands available in SAS,

Example

If Verb > [10] THEN
Print Message [B0]
Print Messsgs [B1]

In the above example, message number B0 would only have been printed if the player had included a
verb with a number greater than 10 in his Input (if the player had not mentioned any verb at all, then
the verb number would have been zero). In all cases, no matter what the player had typed, mesesage 81
would still have been printed. This is because an IF.. command with a THEN "actlon" only affects the
following single command lins,

Similar IF.. commands sxist for checking which directions, movabls objects, unmovable objects or

prepositions (if any) that the player has included in his input. The comparisons which can be made are
as follows :

< Ie lees than

> Is greater than
= le equal to

<>

Is not equal to

<=

Is lees than or equal to
Is greater than or equal to

Other "actions" are avallable with all of the IF.. commands. Using a THEN action is fine if we only
want to execute a elngle command line conditionally, but if we want to sxecute a whole series of
commands conditionally, we have to uee a DO action with the IF.. command instead.

Example

If Preponition = [1] DO
{
Print Messags [1]
Print Mexsage [2]
}

26

In this example, messages 1 and 2 will only be printed {f the player mentioned preposition number 1 in
his last input.

Note that IF.. commands with a DO action ALWAYS requirs the conditional commands to be placed
within curly brackets. The commands betwseen these bracksts are known as a STRUCTURE. The
first bracket (the "{" character) is in fact a STRUCTURE START command and must always be
placed immaediately after the IF.. command on the next command line. The closing brackst (the "}"
character) is a STRUCTURE END command.

Structures may contain any number of commands. It is even quits possible to place one structure
inside anothser, in fact structures may be "nested" in this way up to 255 levels deepl

Example

If Varb = [S] DO

{

Print Message [10]

I1f Moyvabla Object = [1] DO
{
Print Message [11]
}

}

In this example, message 10 would only be printed if the player had mentioned verb number 5 in his
last Input. If the player had mentioned verb number S AND movable object number 1 in his input, then
message number 11 would have been printed as well 1t should be apparent that by using structures,
quite sophisticated logic paths can be defined in the SAS programming language.

Several IF.. Eommands may be chained togsther by using the actions AND or OR.

Example

If Unmovable Object = [39] OR
If Unmovabla Object = [10] THEN
Print Mexzsage [15]

In this case, message 15 would only be printed if the playsr had mentioned EITHER unmovable object
number 9 or unmovahle object number 10 in his last input.

The AND action is used in a similar way :

If Verb = [B] AND

If Movable Objact = [S] AND

If Preposition = [2] THEN
Print Massags [1]

In this example, message 1 would only be printed if the player had menticned verb number 8 AND
movable object number 5 AND preposition number 2 in his last input.

Any number of IF.. commands may be chained togsther in this way, but the AND and OR actlons
may not both be present in the same chain. A routine such as :

If Varb <> [2] AND

If Varb > [18] OR

If Praposition = [3] THEN
Goto JUMP

would NOT be permitted. This would cause the compller to display a suitable error message when the
source was besing complled.

27

30TO can 1iso oe usea as in icticn for an IF.. command. The command ling :
If Unmovabla Object >= [3] GOTO UOBJ.JMP
would have exactly the same effact as

if Unmovabie Object >= [3] THEN
Goto UDBJ.UMP

but is much more memory efficlent as it only uses one source command line instead of two.

Sometimss, thera will be certain sections of our program which we will want to execute several times.
we could duplicate the same routine in our program for each time it was used, but this would ba
rather wasteful of adventure source space. What can be dons instead, is to store the routine once in
what as known as a SUBROUTINE. We can execute the command(s) in our subroutins by using the
GOSUB command. Like the GOTO command, GOSUB uses a line labsel as a parameter instead of a
line number like SAM BASIC's GOSUB.

The subroutine which we are calling must ALWAYS begin a line label so that GOSUB knowe where
the subroutine is located. There can be as many commands in the subroutine as you wish, but the last
command in the subroutine must ALWAYS be a RETURN command. When a RETURN command ls
encountered. The interpreter knows that the subroutine is completed, and control is then passed back
the command line AFTER the one which originally called the subroutine by using GOSUB.

It I8 quite possible for ons subroutine to call another one, though each subroutine must of course end
with its own RETURN command. Subroutines can be nested in this way up to a maximum of 255
levels desp.

Example

Goaub MESS]
Sosub MESS1
Goto SKIPPAST
MESS:
Print Message [1]
Return
SKIPPAST:

In the above example, we have used a subroutine called "MESS!" to print out message number 1 twice
(once for each of the GOSUB commands). Note that wa have taken cars so that the program flow
bypasses the actual subroutine itself by using GOTO to jump forwards to the line label “SKIPPAST",
This is because i{f the interprster encounters a RETURN command without a GOSUB being

previcusly used, an error messags is displayed, as the interpreter has no idea where in the source bank
the RETURN command is supposed to “rsturn” to |

GOSUB may also be used as an action for any of the IF.. commands in a similar way to GOTO. For
sxampls 1

If At Locatlon [3] GOSUB LOC.3

which agaln, 18 more memory efficlent than the squivalent

If At Locatlon [3] THEN
Gosub LOC.3

This example would execute the subroutine located at the line label “LOC.3" if the player was currently
at location number 3.

Note that GOSUB can ONLY call subroutines which are located In the same source bank. It is
Impossible to use GOSUB in one source bank to call a subroutine locatad in a differant bank.

28

It is possibla to loop around a certain section of a program by using a FOR / NEXT command. When
using this command, START, END and STEP numeric paramaters must ALWAYS be defined.

FOR / NEXT ALWAYS requires to be followed immediately by a structure (similar to IF..
commands with a DO actlon) in which the actual looping is to take place.

Example

For / Next : Start [1]1 : End [10] : Step [1]
{
Print Message [30]

}
Thie example would result in message number 30 being printed onto the screen no less than 10 timesl

It is possible to access the current looping counter by using the numeric function CN'T. Numeric
functions may form part (or all) of any numeric paramster required by a command. In the example

below, CNT Is used to specify the number of the message which is printed ontc the screen within the
loop.

For / Next : Start [2] : End [6] : Step [2]
{
Print Massags [CNT]

}

By using the CNT numeric function, this example would result in message number 2 being printed on
the screen, followed by messages 4 and 6.

FOR/NEXT loops may NOT be nested (le. it is not possible to palce one FOR / NEXT loop inside
another one).

There are many other numeric functions which can be used in a similar way to CNT. These ars all

listed in detail at the start of the glossary of source commands located towards the end of this
manual,

Using Flags In An Adventure

Most people think that flags are nicely coloured pleces of material which are hung from flagpoles on
special occasions, or are used to decorate sandcastles.

SAS uses what ars known as “flags" to indicate anything that has happened during the adventure. It's
probably best to think of these flags as the flags used by linesmen in football games, where a linesman
holds up a flag to indicats when a player is “offsids" or keeps his flag held down when he's not. By
looking at the linesman's flag, the football referes thersfore knows if the playsr is "offside” in the
game.

SAS's flags are used in a similar way, although these flags could be used to indicate whataver you
likel They could indicate for example, whather a door is open or not, or whether a hidden object in the
game has been discavered yet. SAS has 255 flags avallable for your use, which in a well planned

adventure should be more than adequate (my first adventure for the SAM - "FAMOUS FIVE" only
used about B0 flags).

SAS's flags can be thought of as a series of 255 little boxes which can be inspected throughout the
game In order to know the flag's current "status”,

Although In most cases, you will only want a flag to contain one of two values - “"trus” (in which case
the flag will contain a value of one) or “false” (in which case ths flag will contain a value of zern),
flags may actually contain any number batween zers and 255, This would allow us to also use flags as

counters or wa could for sxampls, use a flag to indicate how many coins a player was carrying at a
glven time.

29

As mentioned above, it I8 entirely up to you to decide what flags are used for which purpose in your
adventure. IT IS ESSENTIAL THAT YOU KEEP A NOTE OF WHICH FLAGS YOU HAVE USED. You may

have no trouble remembering which flags you are using while writing your game, but when you are

play-testing your adventure and are trying to trace any annoying "bugs”, such a list of flags and thelr
usas will prove invaluable.

At the start of each new gams, ALL flags ALWAYS have their contents automatically set to zero.
Flags can have their contents altered by using the SET FLAG command,
Example
Sat Flag [18] To [1]
This example would place a value of 1 in flag number 18.

The contents of flags can be checked by using the IF FLAG command, which Is used in exactly the
same way as the other IF.. commands discussed earlier.

Example

If Flag [3] = [1] THEN
Print Mesaage [12]

This example would print message number 12 if flag number 3 contained the number 1.

Flags can also have their contents inspected by using the numeric function FLG{n), where n
repressnts a number or another numeric expression corresponding to tha numbar of the flag which we
wish to inspsct.

Remember, numeric functions can only be used in commands which expect numeric parameters.
Example

Print Massage [FLG(B)]

In this example, flag number 8 would contain the number of the message which would be printad by
the PRINT MESSAGE command.

There are several other commands which can be used to alter the contents of flags such as the
INCREMENT FLAG, DECREMENT FLAG and NOT FLAG commands. These ars all datailed in
the glossary of source commands near the end of this manual

In our demonstration "PARK" adventure, only thres flags are nseded :

FLAG 1 This flag s used to indicate whether the key has besn found in the fountain. A valus.
of zero indicates that the key Is still "hidden®, and a value of one indicates the key has
been found,

FLAG 2 This flag is used to indicate whether the park gates are unlocked or not. A valus of

zero indicates that the gates ars stlll locked, and a value of one indicates that they
have besn unlocked with the key.

FLAG 3 This flag is used to indicate whether the park gates are opsn or not. A valus of zero

Indicates that the gates are still cloeed, and a value of one indicatss that they have
besn opened.

Note that for all three flags, we have used a value of zero to indicate the status required at the start

of the game. This is because at the start of each new game, all flags automatically have their contents
sst to zero.

30

In addition to the 2S5 flags available for your own use, SAS also has 30 system flags which the

interpreter uses for its own purposes. THESE SYSTEM FLAGS MUST NOT BE USED AS NORMAL FLAGS
BY YOUR ADVENTURES.

Because thess system flags are used by the interpreter, you should never alter their contents unless

you are sure of what you're doing. An appendix near the end of this manual lists all of the system
flags and explains their uses.

The system flags that you are most likely to want to alter are system flags 10 to 15 which are used to
hold the numbers of messages which are printed when the INVENTORY, SCORF and DESCRIBFE
commands are used. The "START" starter flle already contains commands which assign default values to
these system flags.

The contents of system flags can be altered by using the SET SYSTEM FLAG command.
Example

Set System Flag [10] Te [1]
This example would result in system flag number 10 containing a value of 1.

The contents of system flags can be checked by using the IF SYSTEM FLAG command or

SFLG(n) numeric function, whers n reprasents the number of the system flag to be inspected. n can
be elther a number or another numeric expression

Example

|t Systam Flag [11] > [O] THEN
Print Massege [SFLG(11)]

This example would print the message whose number le held in eyetem flag 11 if eystem flag 11
contained a value greater than zero.

Like normal flags, system flage ALWAYS have their contents est to zero when a new game.ia started
(except for system flag 3 whose contents remain unchanged). Therefors, the best placs to put any
commands which assign values to thess flags is source bank 1

Now that we have a very basic understanding of the SAS programming language, we will start
inserting the various routines which our PARK adventure will require..

Entering Socurce Commands

If you do not have the "PARK" adventure source currently loaded, then load in the partially complated
"PARK" adventurs source which we saved previously by selecting the optlon A Load Adventurs Source
from the editor main menu.

The commands stored in each of the four source banks are manipulated and edited in almost exactly
the same way as the words were definad and edited in the vocabulary which we definad earlier. Each
command is inserted on its own line, and this makes the editing of our routines very easy.

To begin with, we wlill write the routines which deflne the stats of our adventure at the start of sach

game. As you should have realised, these routines ought to be located in source bank 1, so sslect the
option 1 Source Bank (1) from the editor main menu.

N

[ONTROLIF (I} IF (B) HET COOIMANDS MOCATIONS ELAGSMBIECTS TSTEM
— ey

(A)
(B) _{L[H Remarkisse PRRH.BHL sue

RemarkinneSet up INVENTORY messiges aun

Set System Flag [18] To [1) (D)
Set system Flag (111 Te (2]

RemarHiseaSet up SCORE messages sos

o | EESRR EIRE

\ []

Line No. 1 |] |]

Fig 11. - Tha Source Bank Edlting Scraeen.

The screen will clear and after a short while, you will see the eource bank editing screen (in this
instance for editing source bank 1) as shown in Figurs 11.

The first thing you'll probably notice, {8 that the screen looks very similar to the editing screen which
we used earller for defining the vocabulary in our adventurs, and indeed, the command lines forming
our routines in each of the four banks are edited in almost exactly the same way as the vocabulary

lines, with each command line being inserted, deleted or amended withing the long "list* of lines which
form our program. '

Liks when editing the vocabulary, the "list" of command lines is always shown and manipulated in the
area of screen marked (D) in Figure 11, and the cursor marked (B) is used to point at the placs in the
listing whera we may want to delets, add or alter command lines, Agaln, like in the vocabulary editor,
this cursor has two "modes” - ADD line mode (signified by the cursor displaying the latter “A") where
new commands are INSERTED at the current cursor position in the listing, and CHANGE line mode

(eignified by the cursor displaying the lestter "C") where new commands OVERWRITE the existing
command line pointed to by the cursor.

We can movs up and down the listing by using the CURSOR UP, CURSOR DOWN, F1 and FO
keys. The last two move the listing up and down 10 lines respectively.

If a SAM Mouse is connected, then it is possible to bring any desired line directly to the cursor by
moving the mouss pointer to the required line, and pressing the mouss SELECT button.

Move the listing down one line by pressing the CURSOR DOWN key. The line counter located in the

gection of the screen marked (C) in Figure 11. should indicate that the cursor is now pointing to source
line number 2 in the listing.

The routines in source bank 1 are used to define the initial status of the adventure at the start of each
new game, and probably the first thing to consider, is where all of the movable and movable objacts
used in the game are to be located ({e. in which location they all "start out” in).

To place an unmovable cbject in a specific location, we can uss the PUT UNMOVABLFE OBJFECT
command (this {8 a command you will not have encountered before).

Example
Put Unmovabla Dbject [10] At [25]

This example would place unmovabls ocbject number 10 at location number 25.

3z

All of the commands available in SAS's programming language are accessed by selecting the various
bar menus, whose titles are displayed at the top of the screen in the area marked (A) in Figure 11.

You will notice that a lstter in each bar menu title is highlighted. By pressing the key corresponding to
the highlighted lstter, we can directly select the bar menu we require. SAM Mouse owners may also

select a bar menu by moving the mouse pointer over the required bar menu title, and pressing the
mouss SELECT button,

Press the CURSOR LEFT key. The SYSTEM bar menu will be selected. You may view all of the
commands avallable by using the CURSOR LEFT and CURSOR RIGHT keys to move across the
top of the screen, selecting the various bar menus which are available. A selected bar menu can be
removed by pressing the ESC key. This can be handy for removing a bar menu which we selected by
mistake. Press the ESC key now. The currently selected bar menu will disappear from the screen.

The PUT UNMOVABLE OBJECT command is avallable on the OBJECTS bar menu. Select the
OBJECTS bar menu (by pressing the O key) and select the bar menu option U Put Unmovable Objact.
You will now be prompted to enter the number of the unmovable object being used in an entry field. In
our "PARK" adventure, we expect to find unmovable object number 1 (ths fountain) at location number 1.
(refer to the map of the "PARK" adventure as shown in Figure 3. near the start of this chapter), so type
1 (for unmovable object number 1 - the fountain) and press RETURN. In the next entry field, we
define which location the unmavable object is to bs placed In, so type 1 (for location number 1) and
press RETURN. You will now see the familiar prompt .

Is thls correct 2 (Y / N)

Provided you have not made any mistakes, type Y to confirm all is correct (no need to press the
RETURN key here), and we will now see the new PUT UNMOVABLE OBJECT command line
inserted as line number 3 in our listing. .

We will also be placing unmovable object number 2 (the park gates) at location number 2 by using
another PUT UNMOVABLE OBJECT

command. So without altering the current editing

cureor position (it should still be pointing at line Remark 1 ##e PARK.BKI e

number 3), insert another PUT UNMOVABLE

OBJECT command placing unmovable object Put Unmovabls Object [1] At [1]

number 2 at location 2. This new command line Put Unmovabls Object [2] At [2]

will be inserted as command line number 4, After Remark 1 see Set up INVENTORY massages sse
you have inssrted the command, the start of the

listing In source bank 1 should lock lke the cne Sst Systam Fiag [10] To [1]

ghown in Figure 12. Set Systam Flag [11] Ts [2] Fig 12,

If we had wanted to place any movable objects at any specific locations where they could be “found" at
the start of the gams, then we could have used the PUT MOVABLE OBJECT command, which is
used in exactly the sams way as the PUT UNMOVABLE OBJECT command, to place any movable
objects in their respective initial locations. However, since the only movable object which is to be used
in our "PARK" adventure (movable object number 1 - the golden key) is in effect *hidden" (it will only be
“discoversd” when the fountain is EXAMINEd), there 18 no need to define an initial location for it

At the start of each new gams, before ths first command line of bank 1 {s sxecuted, ALL movahle and
unmovable objects have their locations sst to zero. Therefore, location zero can be thought of as a

speclal location which cannot be visited by the player, but where all "unborn" and "destroyed” objects in
the game ars stored.

As you will have noticed in Figurs 12, the second PUT UNMOVABLE OBJECT commeand locks
rather cluttered right next to the following REMARK. In order to make our listing a lot more neat
and readable, it is possible to {nsert blank lines at various points. Tha editing cursor should now be
positioned at line number 4 in the listing. Insert a blank line by selecting the B Blsnk Line option from

the CONTROL bar menu. Type Y at the usual confirmation prompt to confirm all is correct, and the
blank line will be inserted as line number S.

33

IS

:t is oftan a gcod idea to iabel cortain 3ections of qur routines with REMARK commands, which wvili
make the logic of the routines easier to follow and help in tracing any "bugs” which might crop up
when we are playtasting.

Various REMARKSs have been placed at certain points throughout the START Starter file to explain

the purpose of the following commands, and it would be nice to insert a new REMARK at the start
of the command lines we have just entered, sxplaining their purpose.

REMARBKSs are thers simply to ald the adventurs writer (In a similar way to SAM BASIC's REM
statement) - they have no effect at all on the final adventure when it {s compiied.

To insert our REMARK, we will first have tc move the editing cursor back to just bsfaore our first
PUT UNMOVABLE OBJECT command. We could of course, simply move our editing cursor back
to the correct point in our listing by repeatedly pressing the CURSOR UP key, but the editing
options bar menu alsoc gives several other useful ways of moving around the source banks quickly.

Press the ESC ksy (or the mouse ESC buttan) to bring up the editing options bar menu. The menu

will appear in the middle of the screen. The options avallable from the editing options bar menu are as
follows 1

A Add Progrem Line This option puts the editing cursor into “Add Line" mode. While in this
mode, a letter "A" will be positioned by the cursor (at (B) in Figure 11),
and all command lines entered will be INSERTED at the current currsor
position. The cursor i{s automatically set to "Add line" mode when you
first enter a source bank esction from the editor main menu.

€ Change Program Line This option forces the editing cursor into "Change line” mode. While in
this mode, a letter "C" will be positioned by the cursor, and all
command lines entered will OVER-WRITE the existing lins rather than
insert a new line at the current cursor position in the listing. When
this option is selected from the options bar menu, the existing line at
the current postion will bs dieplayed, allowing you to edit or amend it If
you wish (type "N® at the confirmation prompt if you do not). The
editing cursor remains in “Change line" mode until the option A Add
Program Line s selected from this same bar menn.

D Deleta Program Line This option will delete the current command line pointed to by ths
cursor. Before deleting the line, you will be prampted for confirmation -
just in casel It i impossible to delete the first command line in each

source bank (always a REMARK), as this is used by ths editor for its
own reference purposes.

G Go To Line Labal This option will allow the editing cursor to jump directly to an existing
line label located anywhers within the current source bank. You will
prompted to enter the name of the line label that you wish to jump to.
This can be very handy for moving around the listing very quickly,
provided of courss, you know of a line label located near the point in
the listing where you wish to jump to. It is NOT possible to jump to a
line label located within another source bank.

N Go To Llne Numbar This option allows the editing curor to jump to any specific command
line located within the current source bank. You will be prompted to
enter the number of the line that you wish to jump to.

L List Progrem This option displays a listing of the current source bank onto the
screen. Unlike the display shown in the section of the screen marked
(D) in Figure 11, this lsting will ba justified with all structures and
line labels indented, making the program logic a lot easier to follow and
understand. All program listing examples in this manuals ars justified

in this way. When sselecting this option, you will be prompted to define
the line numbers where you wish the listing to start and end.

34

P Print Program Listing Works exactly the same way as abave, but the justified llsting ls sent to
a printer (if connected) Instead.

M Return To Maln Menu This option returns you back to the editor main menu.

To jump to the correct place in the listing for our BEMARK command, select the option N Go To Lins
Number, and type 2 to bring command line numbser 2 to the editing cursor,

To actually insert the REMARK itself, select the optlon R Rsmark from the CONTROL bar menu. In
the REMARK entry field, typs in the following text :

ses Daflne all unmovable objsct’'s Initlal locations sew

Press RETURN and type Y at the usual confirmation prompt to insert the line as line number 3 in
the listing.

Remark : s»e PARK.BK1 sss

Remark : »ea Daflna all unmovnhl‘n object’s Initial locations ewe

Put Unmovable Objact [1] At [1]
Put Unmovabla Objact [2] At [2]

Remark : »ss Set up INVENTORY messages sss

Fig 13.

Now insert another blank line immediately on the next command line to keep things looking nice and

neat. If you hava entered everything correctly, the start of ths listing in bank 1 should now loock like
the one shown In Figure 13.

Now we need to define which location the player begins the gamse in. This is done by the SET
LOCATION which is naw located at lilne number 28 in the adventurs source. Bring up the editing

options bar menu again by pressing ESC, and use the option N Go To Lina Number to jump to command
line 28 in the listing.

The SET LOCATION command has a single numeric paramster which is used to dsfine the number
of the desired location. It s immaediately followed by a DBESCRIBE command which makes available
any defined exits, and prints a full description of the "new" location detalling any exits and objects
which are present You will notice that the START starter file has given the SET LOCATION a
default location number of 1 If we had wanted the game to begin with the player starting at location
number 1, then this command would have been fine, but since the player {s to start out in location
number 2 instead, we will need to amend this command line.

Press ESC to bring up the editing
options again, and select the option C
Change Program Line, You will Set System Flag [15] To [6]
immediately see an sntry fleld for the
command'e numeric paramster, It will Remark 1 s=e Now dafine the Initlal location and describe It ame
already contain its current expression
(in this cass the number 1). To alter the | Sst Location To [2]
contents of the fleld, you simply typs Descrlbe

over any existing information, so typse
the number 2 (for location number 2) Jump To Input
and press BRETURN., Type Y at the
confirmation prompt. The end of the Flo 14
listing should now look like the ons g 1%
shown in Figurs 14,

as

The SET LOCATION command should ONLY be used in source bank 1 to define the player's initial

location. If you wish the player to move directly to other locations {n other source banks, you should
use the MOVE TO or ACT UPON DIBECTION commands instead.

Once the initial location has been described (by using the DESCRIBE command which prints the
location description text, and gives detalls of any availabls exite or movable objects present), the
following JUMP TQO INPUT command is used to get the player's first input.

At thae start of sach new gams, all flags (both user and system) have their contents set to zero (except
for system flag 3 - see appendix on system flags). This means that If our adventure had required any
flags to have a non-zero inltial value, then appropriate SET FLAG commands would have had to
have been inserted in source bank 1 as well. This does not apply however, with the PARK dema
adventurs.

The remaining commands in source bank 1, are all REMARKSs and SET SYSTEM FLAG
commands - used to define the numbers of various messagss which are printed on the screen
whenever the SCORE, INVENTORY, DESCRIBE, DESCRIBE LOCATION, LIST EXITS or
LIST MOVABLE OBJECTS PRESENT commands are used. You could of course alter the
relevant SET SYSTEM FLAG commands if you wished to use a different messags (or none at all)
instead of the default values assigned in the START starter file.

We have now completed all of the routines required for source bank 1. Note that the editing cursor is
STILL in "Change line” mode (the lstter "C" will be displayed next to the editing cursor). If we had
wanted to insert any more additional commands before leaving leaving source bank 1, WE WOULD
HAVE TO HAVE PUT THE CURSOR INTO "ADD LINE" MODE FIRST, by selecting the option A Add
Program Line from the editing options bar menu

To leave source bank 1, select the option M Raturn To Maln Manu from the editing options bar menw. The
changes you have just made in bank 1 will be stored, and you will return to the editor main menu.

Next, we will add the routines required for our PARK adventure in source bank 2. Remember, the
routines in source bank 2 are ALWAYS executed as soon as the player has hit the RETURN key
after typing in his latest instructions, so this is where we will add the routines which deal with the
fountain and park gates being EXAMINEd, and ths new UNLOCK and OPEN verbs.

Select the option 2 Source Bank (2) from the editor main menu After a short while, you will see a
source bank editing screen identical to the one used when editing sourcs bank 1

Tha START starter file already consists of a "skeleton" of various routines in souce bank 2, among
which are routines already dealing with the SAVE, LOAD, RAMSAVE, RAMLOAD, QUIT, SCORE,
INVENTORY, LOOK, TAKE, DROP and EXAMINE verbs. Alsc included are routines which handle any
directions mentioned by the player, and routines which actually check (and display suitabls error
messages If nescessary) that any objects mentioned by the player are actually present or being carried
by the player - as appropriate. The entire listing of START starter file, including the routines in source
bank 2, are included in an appendix near the end of this manual, and might maks interesting reading.

Firstly, we will deal with the fountain being EXAMINEd. We will need to insert some lings in the
routine dealing with the EXAMINE verb, which control the golden key being “diecovered” once the
fountain has been inspected. Select the optlon 6 Go To Lina Label from the editing options bar menu,
and enter EXAMINE as the name of the line labsl to jump to. All verb routines in the START starter

fila have lins labels located at their beginning, and as you might expsct, "EXAMINE" Is the line labsl
located at the start of the commmands dealing with the EXAMINE verb.

The editing cursor should now be pointing at the "EXAMINE" line label currently located at command
line number 165. Uss the CURSOR DOWN key tc move ths sditing cursor down to the blank line

located at line number 169. This is where the extra commands dealing with the fountain and gates
being examined will be Inserted.

36

Now insert at this point the following command lines which deal with the fountain being examined :

if Unmovebls Objact = [1] AND
If Flag [1] = [0] DO

{

Print Masxsge [17]

Sat Flag [1] To [1]

Put Movable Objeact [1] At [1]

Jump To End

}

The IF UNMOVABLE OBJECT and IF FLAG commands are to be found from the “IF (1)" bar
meny, the STRUCTURE START ({), JUMP TO END and STRUCTURE END (}) commands
from the "CONTROL" bar menu, the PRINT MESSAGE command from the "SYSTEM" bar menu, and
the PUT MOVABLE OBJECT command from the "OBJECTS" bar menu.

In the above routine, the commands located within the structurs would ONLY be executed If the player
had typed EXAMINE FOUNTAIN, AND flag number 1 contained the value of zerc (its initial valus), Notice
that the routine itsslf does not actually detect whethsr the player has included the verb EXAMINE in
his input. This is because this has already been dstected earlier in the listing (at command line number
58), and the routines located at the line label "EXAMINE™ will ONLY be executed If the player had
included the verb EXAMINE in his input.

The PRINT MESSAGE command prints some text describing that the player had found the golden
key in the fountain. The SET FLAG command is used to put a new value of 1 in flag 1 (used to
indicate that the key has been found) - This prevents a "new” golden key being discovered every time
the fountain is examinedl The PUT MOVABLE OBJECT command then places the golden key in
location 1, ready to be picked up by the player, and the JUMP TO END command is used to leave
source bank 2 and jump to any "low priority” routines located in source bank 3. '

Now insert a blank line at the currsnt editing cursor position, and enter thes following commands
which deal with the park gates being examined :

If Unmovebla Objact = [2] DO
{
It Flag [2] = [0] DO
{
Print Msasage [18]
Jump To End
}
Print Massage [19+FLG(3)]
Jump To End

}

Followed by another final blank line.

In this routine, the commands within ths firet structure would ONLY be executed if the player had
typed EXAMINE BATES. The commands within the second, "nested” structure will only be executed if flag
2 (used to indicate whether the gates are still locked) contains a value of zero. If so, then message
number 18 will be printed. The following JUMP TO END commend jumps directly to source bank 3,
and prevents the second PRINT MESSAGE command being executed as welll

The second PRINT MESSAGE command in ‘the above routine illustrates quits well just how useful
SAS's advanced sxpression interpreter can be. The command's numeric expression adds 18 to the
contents of flag 3 (used to Indicats whether the gates are open or not) by using the FLG(n) numeric
function. Thsrefore, if the gates ars closed (In which case, flag 3 will contain a value of zero), message
number 19 will be printed, but if the gates are now open (in which case, flag 3 will contain a value of
1), then message number 20 will be printed instead. By using a numeric sxpression in this way, wae

have saved ourselves the nesed to use TWO separate PRINT MESSAGE commands - one for each
different valus of flag 3.

Next, we will insert twao totally new routines which will deal with the verbs UNLOCK and OPEN. Select
the editing options bar menu and jump to line number 59.

Insert the following command lines :
If Verb = [12] GOTO UNLOCK
If Yerb = [13] GOTO OPEN

The IF VERB command is found in the "IF (1) bar menu. Make sure that you have inserted a blank
line after sach IF VERB command in order to keep the listing nice and neat. These two lines check
whether the player has mentioned the verbs UNLOCK or OPEN in his input. If so, then the program
jumps to the as-yet undefined line labels "UNLOCK" or "OPEN" where our routines will be placed. Notice
that there are similar IF VEBRB commands located in this section of the llsting which jump to the
various routines in this source bank dealing with each verb.

To Insert the routine handling the UNLOCK verb, jump to command line 198 by sselecting the option N Go

To Line Numbar from the editing options bar menu. Now insert the following commands including the
blank lines

Remark : sse UNLOCK command routing ses

UNLOCK,
If Unmovabla Objact <> [2] GOTO CAN'T

If Not Carried [1] DO
{
Print Lowar Messags [21]
Jump To Input

}

If Flag [2] = [1] DO
{
Print Lowsr Msuzsage [22]
Jump To Input

}

Print Masaags [23]
Sat Flag [2] To [1]
Jump To End

The LINE LABEL s found from the "OPTIONS" bar menu (remember - the final colon character ""
shown In the listing I8 NOT part of the line label name), the IF NOT CARRIED command from the

*IF (2)" bar menu, and the PRINT LOWEBR MESSAGE command is found from the "SYSTEM" bar
ment.

Remember to again insert a blank line after the JUMP TO END command in order to keep the
listing neat.

The abova routine dealing with the UNLOCK verb actually consists of four separate parts :

It firstly makes sure that the player has ONLY tried to use the verb with unmovable object number 2
- the park gates (trying to UNLOCK the fountain would clearly be nonsenssl). If the player did NOT

mention unmovable object number 2, then a jump is made to the line label "CAN'T" which is followed
by a routine which prints the error message You cannot do that |

Secondly, the IF NOT CARRBIED command is used to check whether the player is NOT currently
carrying the golden key which is needed to unlock the gates with. If he is Indeed not carrying the kay,
then a PRINT LOWER MESSAGE command is used to print an "srror” message in the lower
input window, and a jump is made to immediately get the player's next input.

38

.74V, Y ZOICKC W3 mave T osee AL2Caar Ll I3ty alavg o arlady 2ssit uniccx:u LICAVROEEREF1 s Ral
unlock an already unlockad gatal). thia is signifled by flag 2 containing a vaiue of .. .f :his '3 ;23 case
then another sultabla “error" message is displayed and a direct jump ls made to get the player's next
input.

finally, providing all's well, message 23 is printed (confirming that the gates ars now unlocked), flag 2
{s set to contain the value 1 (used to indicate they are unlocked)} and a jump is made to any "low
priority" routines in source bank 3.

The editing cursor should now be pointing to the blank line entered after the JUMP TO END
command - command line number 219. This is where the routine dealing with thes OPEN verb will be
located.

Type in the following commands, again including the blank lines :

Ramark : ss» OPEN command routing sw=e

OPEN:
if Flag [2] = [D] DO
{
Print Massags [24]
Jump To End

}

It Flag [3] = [1] DO
{
Print Lowar Messeags [25]
Jump To Input

}

Print Massage [26]
Set Flag [3] To [1]
Jump To End

again, remembering to meke the listing neat by including a final blank line after the JUMP TO END
command.

This routine consists of three separate parts 1

Firstly, flag 2 Is inspected to ses whether it contalns a value of zero, indicating that the gatea ars still
unlocked (cbvicusly, you cannot open a locked gatel). If so, then message 24 is printed, and a jump ls
made to bank 3.

Secondly, flag 3 is Inspected to ses whether the gates are elready open - indicated by flag 3 containing
a value of 1. As it would be silly to attempt to open gates which are already open, a suitable "error”
message s printed, and & direct jump is made to get the player's next input.

Finally, provided all's well, message 26 is printed indicating that the gates ars now open, flag 3 is made
to hold a value of 1 indicating that the gates are now open, and a jump is made to the "low priority"
routines in source bank 3.

wea have now entered all of the routines required In sourcas bank 2. To leave eource bank 2, select the
option M Return To Maln Menu from the editing options bar menw. The changes you have just madse in
bank 2 will be stored, and you will return to the editor main menu

Next, we will add the "low priority” routines required for our PARK adventure in scurce bank 3, Low

priority routines are ONLY executed once the “high priotity” routines in bank 2 have been executed, and
a JUMP TO END command has been sncountered.

39

There is only one routine which needs to be placed in source bank 3 - One that detects whether the
player has finally escaped from the park and ie now In location number 3. Sslect the optlon 3 Source

Bank (3) from the editor main menu. After a short while you will see the now familiar scurce bank
editing screen.

As you can see, the START starter flle does not presently contaln any low priocrity routines at alli In
fact, apart from the three BEMARKS, the only command in this bank at the moment is the single
CONTINUE WITH INPUT command. CONTINUE WITH INPUT works in a similar way to the
familiar JUMP TO INPUT command, but before getting the player’s next input, any remaining
multiple commands in the player's previous input are dealt with first. it is this command placed at the
end of source bank 3, that allows the player to enter many multiple commands separated by commas,
full stops, or the words "THEN" or "AND". If a multiple commannd still exists, then it is processed by the
Interpreter in the normal way, and a jump is made to the first command line of bank 2,

Press the CURSOR DOWN key twice to move the editing cursor to command line number 3, and
insert a blank line. Now immediately aftsrwards, insert the following commands :

It At Locatlon [3] DO
{
Print Messags [27]
Pause
Qult

}

The IF AT LOCATION command is found on the "IF (1)" bar menu, and the PAUSE and QUIT
commands from the "COMMANDS" bar menu.

What this routine doss is to use the IF AT LOCATION command to check whether the player has
escaped from the park and is presently in location number 3. If he is indeed in location 3, then an
end-of-game congratulations message is printed, and the PAUSE command s used to walt for the

player to press a single key before the QUIT command begins a completely new game by jumping to
the first command line in source bank 1

We have now finished with source bank 3, so return to the editor main menu in the normal way.

Select the option 4 Source Bank (4) to jump to the source editor for source bank 4.

All that now remains to ba done in our PARK adventurs is to insert two local conditions in source bank
4. The routines in source bank 4 are ONLY sxecuted when ths player immedlately moves to ancther
location. This can be either by the ACT UPON DIRECTION command, which checks the current
location's exits table for any direction mentioned by the player in his last input - if a valid connection
exists, then the player is moved to the reslevant location, ctherwise no actlon is taken, or the MOVE
TO command which can bes used to movs a playsr directly to any specific location.

The most inportant command already present in this bank is the DESCRIBE command which is used
to describe the "new” location as it is entered by the player.

The purposa of cur first local condition will be ta create a "barrier” preventing the player from simply
walking through the park gates if they are closed or locked.

Leave the cursor at command lina number 1, and insert a single blank lne followed by the following
commands 1

If Flag [2] = [O] OR
It Flag [3] = [0] THEN
1f At Locatlon [3] DO
{
Print Message [2B]
Move To [2]
}

40

The MOVE TO command {8 found on the "LOCATIONS" bar manu.

Once a player has entered any new location, this routine firstly checks whether the park gates are
still locked (signified by flag 2 containing a value of zero), or if they ara still closed (slgnified by flag 3
containing a value of zero). If elther is the case, then a check is made ta ses whsther the playsr has
just moved to location 3. Since the only way to location 3 is by travelling Fast from location 2, the
playsr must therefore have "walkad through" a locked or closed gatel If this is indeed the cass, then a
sultable message is printed telling the player that his way has been blocked by the gate, and he is
moved back to location 2 - although In effect, the player is unaware that he was briefly in location 3
at all, as this routine is placed before the DESCRIBE command which would have described location
3 as he entered itl

Move the editing cursor to the REMARK at command line 15, and insert a blank line, followed by our
second local routine which consists of the following commands :

If At Locatlon [2] OR
If At Locatlon [3] THEN
Put Unmovable Objact [2] At [LND]

What this routine does, is to actually make the park gates (unmovable object number 2) “follow" the
player as he moves through them. The PUT UNMOVABLE OBJECT command uses the numsric
function LNO as its secand parameter. LNO simply returns the number of the player's current
location.

The idea of actually moving an UNMOVABLE object to a differsnt location might seem a little strangs,
but not if you consider that the playsr might wish to go through the gates and EXAMINE them from
the other sidsi Strictly speaking, this routine is not really nescessary for the PARK adventure, since the
game snds as soon as the player haa reached location 3, and he would simply not have time to examine
the gates (or do anything else for that matterl), but this certainly would not be the case if the game
was sxpanded later. The same procedure would apply to certaln unmovable cbjects in your own
adventures which the player would be permitted to travel "through" such as doors, windows, and
possibly unmovable objects used as a mode of transport such as boats, cars, planes etc, which should
ideally be present both on the INSIDE and OUTSIDEI

We have now completed the PARK adventure source, and all that remaine to be done e to return to the
main menu, and save the entiras source onto your “PARK" data disk (the one which you were told to
FORMAT and havs ready at the start of this chapter). Sslect the option S Save Adventura Sourcs from
the editor main menu. The compiler will now be able toc convert the adventure source saved on this
data disk into a complsts adventure game which you will be able to either play straight away, or save
as complete BOOTable game onto a new disk. How the compller works is detailed in the next chapter..

Admittedly, the PARK adventurs is a pretty pathetic game by anyons's standards (the well-seasoned
adventure player would probably take about 30 seconds to complete iti}, but it ie only intended to eerve
as a gulde to using and finding your way around the source editar.

Once you have successfully complled and played the PARK adventure, why not try and improve or add
to the game by for example, adding a few more puzzles and improving on the existing rather sparse
location descriptions. As & challenge, try to implement the following :

Include LOCK and CLOSE verbs sc that the gates can be closed and locked with the key as well.
Remember, the verbs will have to be defined BOTH in the vocabulary and the verb definitions as well.

Your routines will also have toc make sure that the gates are closed before the player is allowed to lock
them.

Try to include some more movable objects and locations. How about making surs that the golden key

can only be reached by a magnset on a plece of string ? I'll leave it up to you to decids which verbs to
uss for this.

41

SOURCE EDITOR CONTROLS SUMMARY

Bar Menus

CURSOR UP Highlighte the previous bar menu option.
CURSOR DOWN Highlights the next bar menu option.
RETURN Selects the currently highlighted bar menu option,

Bar menu choilcee may alsoc be selected by pressing the key corresponding to the first character
displayed in the name of each bar menu option.

SAM Mouse owners may aleo highlight the option required by moving the mouss up and down, and
selecting it by pressing the mouse SELECT button,

Entry Flelds

CURSOR LEFT Movese cursor one character to the lsft,

CURSOR RIGHT Movee cureor one character to the right.

DELETE Deletes the character to the left of the cureor position,
F2 Ineerts a space at the current cureor position.
RETURN Accsepts the data in ths entry fiseld.

Vocabulary Editor and Sourcs Bank Editors

CURSOR UP Move up the listing by one line.

CURSOR DOWN Move down the listing by ons lins.
F1 Move up the listing by ten linses.
FQ Move down the listing by ten lines

SAM Mouss owners may bring any line to the cureor by moving the mouss pointer to the desired line,
and pressing the mouse SELECT button.

ESC Select the "editing options" bar menu / remove a currently selected bar menu.

CURSOR LEFT Select the next bar menu to the lsft.

CURSOR RIGHT Sselect the next bar menu to the right.

A bar menu may also be selected by pressing the letter higlighted in the bar menu titles at the top of
the screen.

SAM Mousse owners may also select a bar menu by moving the moues pointer to the title of the desiresd
bar menu at the top of the screen, and pressing the mouss SELECT button.

42

THE SOURCE COMPILER

The compller program converts your adventure source code created in the source editor into a fully

running machine code adventure which you can either play straight away, or save as an auto-running
game onto a formatted disk,

The compiler itself s one of two main programs located on the "Utilities" disk which was prepared
earlier in the chapter “Setting Up SAS",

To load the compliler, eimply insert the "Utilities" diek intc drive 1 and press the F9 key to boot up the
disk in the usual way. You will now eee a simple menu ecreen prompting you to prese the 1 key to

load the compller, or 2 to load the graphice extenelon program. The graphice extension program is used
to add location graphice onto compiled adventures, and will be dstailed later.

Prees 1 to load the compller, and after it hae finiehed loading, you will be prompted to insert your
adventure source data diek into drive 1. Note that unlike the source sditor, the compiler ALWAYS
requires you to Insert your data disks into drive 1, even if your SAM hae two disk drives Ffitted.

To compile our “PARK" adventurs, ineert your data disk containing the adventure source saved from the
source editor, and press a ksy. The compiler will now read a directory of files from the disk, and
display all adventure files with the filename extension of “HDD" (the "header” file saved by the editor).
On normal data disks, there will only be one "HDD" file, ae it {s normally wiss only to eave ons
adventure source psr digk, but there are two differsnt adventure sources actually eaved on the
"Utilities” disk iteelf -~ the "START" starter file, and the "SPAMC0" source for the demonetration
adventure which you played sarlier.

Near the bottom of the ecresn, you will be prompted to typs the name of the adventure ssurce that
you wieh to complile. Type in the name PARK (no nsed to add the "HDD" fllename extsnsion) and press
RETURN. You will now be asked how many text columne per line your adventure will be using (you
should have already declded this when defining the location descriptions and meseages in the editor).

Since the PARK adventure was deelgned to use 64 text columns, type 2 for choice number two (no need
to prese RBETURN).

Next, you will be aeked to specify how many characters in each word in the playsr's input will be
recognised against the worde defined in the adventure vocabulary, With SAS, you may specify any
number of characters betwesn 4 and 15 {in which case, nearly all worde in the game would have to be
spelled out in full I} The numbser of recognised characters is entirely up to you. This can be most

ussful in allowing the player to abbreviate most of the worde in his input, although if you used 4
characters, an input such as

BREAK WINDOW

might not nescessarily be recognised as what ths player meant by the interpreter - a case of
flatulence perhaps 7 i

Normally, 5 characters will be sufficient for most adventures (in fact the compiler displays a value of
5 in the entry fleld as a default value), but you should realiss that this could still cause confusion

when the player types in the full name of one of the four dlagonal compaes dirsctions. For example,
the directione

NORTHEAST
and

NORTH

both have the same first 5 characters in their name. In thie cass, the interprster would assums that

the player meant whatever word appeared first in the vocabulary Hst. Of course, this problem would
have besn avolded {f the player had typed NE insteadl

43

Press RETURN to use the default value of S characters for vocabulary recognition.

You will now be asked whsather you want your compiled adventure toc use text comprassion.
Adventurses using text compression will result in the compiled adventure being a smaller size, with
thersfore more memory being avallable for location graphics (should you decide to have any), with the
amount of space used for text In the adventure being reduced by around 30 to 60 percent (depending of
course upon what words you have used, and your own personal literary style).

However, text compression can add several minutes to the amount of time taken by the compiler to
compile your adventure sourcs, especially if your adventure uses many messages or locations with
lengthy descriptions. It is therefore a good idea NOT to use text compression while compiling your
adventures for play-testing purposes, using it only when you are reasonably sure that your adventure
Is "bug-free" and you are ready to save your finished game to disk for others to play.

For the "PARK" adventure, type N (no need to press RETURN) for no text compression. The compller
will now load each separate section of the adventure source from the data disk and compile it in turn.

After about 20 seconds (SAS's compiler works fairly quickly), the "PARK" adventure will have hesn
compliled, and you will see & message on the scresn along the lines of

Compllation OK,.
Compllatlon Length 1 3349 Bytas - Sultable For 256k / 512k SAMs.
Bytes Free For Graphlcs : 144107 (256k) / 406251 (512k).

(Don't worry if the numbers shown on the screen are not exactly the same as the ones shown abovs)

Sometimes however, the compiler will be forced to stop compiling your adventure ecurce, emit a loud
BEEP and display an error message on the scresn such as

Lina Labal Not Daflnad

This means that the compller has dstected an error you have made while writing your adventure
source in the editor (the exact error message displayed will of course, depend on the type of error that
was detected). The error will have been detected in whatever part of your adventure source was being

complled at the time the error cccured, and the compiler will tsll you which command line number has
caused the trouble along with a copy of the command line {tself in most cases.

To rectify the problem, you should first consult the appendix in this manwal “Compiler Frror Messages”
which lists all possible compller errors along with their likely causes, and return to the source editor

in order to amend the offending commands/iteme before attempting to compile your adventurs source
again,

Provided your adventure has compiled with no problems, you will now be able to save your adventure
to disk as an auto-running file or play your compiled game straight away.

Press P to play your adventure. Thers will be no way of returning back to the compiler while playing
the game.

Press S to save your adventurs as an auto-running game onto disk. Before selecting this option, you
should first make sures that you have handy a formatted disk with a DOS saved as the first file. If you
intend to sell your finished games, or pass them on to your friends, then it is probably best to use
SAMDOS on the disk, as the inclusion of MASTERDOS (or MASTERBASIC for that matter) will infringe
copyright.

Note that you MUST save your compiled adventure to disk if you intend to add location graphics to

your adventure by using the graphics extenssion program on the "Ut{lities" disk. How this is done is
dstalled in the next chapter..

44

THE GRAPHICS EXTENSION PROGRAM

This chapter will deal with how high quality location graphice can be added to your compiled
adventurss.

The Graphics Extenslon program on your "Utilities" disk s used to add graphic screens to your final
compiled adventure disk. Ae each screen le added, it is automatically compreesed and combined with
your adventurs code.

Designing Your Pictures

The graphics extension program can add location graphics either by using scresne which have been
deeigned with the art utility program FLASH, or normal SCREENS files. If SCREENS$ files are used, then
any PALETTE changes in the picture ueing line interrupte will be ignored, If your adventure is using
sither 64 or 85 text column mods, then the picturs will have to have bsen designed/saved in MODE 3. If

your adventure uses 42 or 32 text column mode instead, then your pictures will havs to have bsen
designed/eaved in MODE 4.

There are a few limitations to bear in mind however, when designing your pictures ;

1) Only the first 128 rows of pixels in your picture will actually be saved and included in
your adventure. This is roughly equal to the first two thirds of the screen, and
represents 16 rows of text as printed by the interprater. Therefors, you must make sure
that your picture is concentrated towards the top of the screen. Remember, it is always

possible to load your screen intes FLASH, scroll it upwards within the program and
re-savs it

2) Ideally, your picture should not use PALETTE postions 0 and 1. SAS uses PALETTE
position O as its PAPER colour and PALETTE position 1 as its PEN colour (Normally these
are assigned default colour values of O - "pitch black™ and 120 - "turnip" respectively).
SAS will NOT allow the colours in these two PALETTE positions be overwritten by the
colours in your pictures which have been assigned to these PALETTES, Therefors, if your
screen plcture DOES use colours in these two PALETTE positions, you should make sure
that they contain colours with match the same valuss that SAS s itself using,
otherwise your picture will seem to contain two strange colours which were probably not
intended when it was designed. It i{s possible ta change the values in PALETTE positions 0
and 1 changing SAS's normal PAPER and PEN colours. This is detalled in the chapter
"*Customising SAS",

3) The above limitation is especially important if your adventure is using 64 or B85 text
columns, ae then the picture will be represented in MODE 3 which only has 4 PALETTE
positions avalilable - and two of these (PALETTE positions O and 1) will be used by SAS
itselfl The remaining 12 PALETTE positions normally used in MODE 4 pictures will giva
various mixes of the colours contained in PALETTE positions O to 3. It Is therefors
recommended that the graphics Included in 64 or BS text column adventures should be

designed in a more-or-less monochrome style, and that they are designed in the MODE 3
setting of the art program FLASH. .

4) Your pictures should not be designed to use “flashing” colours (This 18 normally achisved
by a PALETTE position in each of the two consecutive PALETTE tables holding a different
colour value). Because SAS runs most of the time with the ROM Interrupts disabled, such
pictures will only appear to "flash” very intermittently (if at alll)

Once all of your pictures have been designed, you should make sure that they are all saved on a new
single disk, as the graphics extenslon program will require this.

45

Jaing Graphics In Your Adventurs

You can define at which point in your adventure a graphic is shown by using the SHOW GRAPHIC
command. SHOW GBRAPHIC is used with a numsric parameter which specifies the number of the
graphic to be shown. SAS allows up to 255 different graphics present in the adventurs, but in
practics, you will probably find that thera is not enough memory available for that manyi

Graphic number 1 refers to the first graphic to be added to the compiled adventura by using the
graphics sxtenslon program, graphic numbser 2, the second and so on.

To use the SHOW GRAPHIC command to display a location graphic for a specific location, we would
write a roatine in source bank 4 such as:

If At Locatlon [10] THEN
Show Graphle [1]

Describa

This example would show graphic number 1 every time the player moved to lacation number 10. Note
that we have displayed the location picture BEFORE the location was described using the DESCRIBE
command. This is because before SHOW GRAPHIC automatically scrolls any existing text out of the
upper text window before displaying the picture, and if we had placed the SHOW GRAPHIC
command AFTER the DESCRIBE, the location desription text would have scrolled off of the screen
before the player had had a chance to read {ti

Of course, there {8 no reason why SHOW GRAPHIC should be limited to just displaying location
picturee. You could just as easily uss SHOW GRAPHIC to display a picture in reeponss to an object
being examined, or an object such as a treasure map being read. You could even use SHOW
GRAPHIC in source bank 1 to display a welcoming picture or loge every time a new game is started.

If SHOW GRAPHIC commands are present in a compiled adventure which has not yet had graphics
added by the graphic extension program, then the SHOW GRAPHIC command is completely ignored

by the interpreter. This is handy for play-testing adventurss without having to go to the bother of
adding graphics after compilation.

Using The Graphicse Extension Program

To {llustrate how the graphic sxtension program works, we will add some graphics to the “SPAMCO"
adventure source which is supplied on the "Utilities” disk. This is actually the source for the DEMO
adventure which you will have played in the chapter "PLAYING THE DEMO ADVENTURE".

Firstly, prepars a blank formatted disk, and save a DOS file as the first file on the disk. This disk will

be used for the compiled SPAMCO adventurs, and will eventually contain a complete auto-running
adventure game complete with graphics.

Load up the "Utllities" disk by pressing F9, and press 1 to load the compiler. Now load in the "SPAMCD"
adventurs source for compilation (this is also on the "Utilitles” disk, so keep the disk inserted when
prompted to insert your source data disk)

Complile the SPAMCO adventurs source, using 42 text column mods, 6 character vocabulary recognition
and no text compression. The source will take a little while longer to complle than the PARK adventure
did, but then it's considerably largeri

After a short while, you will see a message indicating a successful compliation. At this point, press the
P key to save an auto-running adventurs onto the blank disk. Note that the graphics extension
program requires the compiled adventure to be saved in this way before any graphics can ba added.

.46

At this point, you may play the SPAMCO adventure if you wish by loading up the disk, but of course,
there will be no graphics included in the gams.

Reset the computer and BOOT up the "Utilities" disk. This tims, press 2 to load the grraphics extension
program. Once the program has finished loading, you will be prompted to insert your compliled
adventure disk. Insert the disk with the new auto-running SPAMCO game and press a kay.

You will now be prompted to insert your SCREENS disk. This refers to a disk containing all of the
pictures (saved as elther FLASH screens or SCREENS files) that you wish to include in the adventurs.

In this cass, all of the screen pictures to be added are to be found on the "Utilities" disk, so Insert this
disk again and press a ksy.

A directory of all available files on the disk (whether they are screen pictures or not) will he displayed,
followed by some Information indicating how much memory is still available for graphics. This
information will look something like

124240 Bytas free for graphics (256k)
386384 Bytas fraa for graphics (512k)

(Don't worry If the numbers shown on the screen are not exactly the same as the ones shown above)

The numbers indicating how much free memary is available, will steadily decreass as sach naw picture
Is added. Exactly how much memory each picture will use up will depend upon how well it compresses.
As a gensral ruls, pictures with large areas left blank or areas filled with sclid patterns or colours will
compress better than more cluttered pictures, but almost all pictures will comprese to some extent.

At the bottom of the screen, you will be prompted to enter the filename of the first picture to be
included. Type in the fileneame FR and press RETURN. A picture of ths famocus "DREAD" Magazine
publisher Colin McDoughnut will be lcaded from disk. As the picture is loading, the colours may sesm a

little strange - don't worry about this. After a very short pauss, the picture will have been compressed,
and it will then be re-displaysd in its proper colours.

The order in which you load in the various pictures ia YERY IMPORTANT, as the FIRST picture you

load in will be recognised as graphic number 1 by the intsrpreter, the SECOND as graphic number 2 and
80 On.

If you have made a mistake in the order you have loaded one of the pictures, don't worry. You can
delete the last locaded picture. Do this now by typing D followed by RETURN. You will notice that as

soon as you have done this, the amount of avallable memory immediatsly increases as the the memaory
taken up by the last loaded picture is reclaimed.

Now load up the seven pictures required by the SPAMCO adventure in the following order :

MI CB 6R FR CH AL HA

Once you have loaded in the last graphic picture, type F followed by RETURN tao finish. You will now
be prompted to ineert your compiled adventurs disk again. Do this and press a key. After a short while,
your previocusly saved complled adventure will be over-written by a new version containing all of the
graphics you have just added. Load it up and seel

If you Intend to sell your adventures commercially, it is probably a good idea to make sure that your

adventure and graphics do not use up enough memory to prevent them being run on a 256k SAM - a
lot of peopls still have the 256k machinesi

Of courss, there is nothing to stop you from including TWO different versions of your game on the
same disk. Tha 512k varsion conld includs extra featurss or graphics to thas second 256k version.

47

TESTING YOUR ADVENTURE

Playtesting ie very important when writing adventures. All too often, adventures are relsased which
contain "buge", errors in logic or spelling mistakee, Such adventurss when relsased will look
unprofessional and are not likely to be very well reviewed (If at alll).

When playtesting a gams, it is very tempting to juet play through following the correct solution. Try to
play the game in the same way as someone would who was approaching the game for the very first
time, Ideally, try to use a couple of friends to try the game out - If you can actually watch them
playing, then so much the better. You'll be suprieed at the number of good suggestione and comments
that they will come up with - valid thinge that you would never have noticed yourself.

Above all, always have a dictionary handy when writing and correcting your adventurs text. Follow the
simple rule IF IN DOUBT ABOUT A WORD - LOOK IT UPI Nothing is mors effective in
helping potential publishers reject your game than bad spelling or English grammar. Again, a couple of
friends will prove most uesful in spotting spelling mistakes that you would have otherwise missed,

Sometimes while playing an adventure, the interpreter will clear the screen, smit a loud BEEP and
dieplay an error messeage such as

Return Without Praevious Gosub

This means that the interpreter has detected an error while executing a command in the compiled
adventure (the exact srror message displaysd will of courss, depend upon the type of error that was

detected) The interpreter will dieplay after the srror message the line number of the command which
generated the error, along with ite source bank number,

To rectify the problem, you should first consult the appendix in thie manual “Interpreter error
Messages™ which llets all possible interpreter errors along with their likely causes, and then return to
the source editor in order to amend the offending command before attempting to compile your
adventure source and subgequsntly play your adventurs again.

Once an interpreter error message has been displayed, it will bs possible in most cases to continue
playing the adventurs by pressing any key to return to the gams. In some instances however,

continuing play after an interpreter error will have unforseen consequences for the remander of the
adventure, and may even result in a system “"crash” or resst. '

1t ie possible to make adventures euppress the printing of interpreter error meesages altogether, and
sven dstect whether euch an error has occured. Ses the appsndix on syetem flags for mors detalls on
thie.

It goes without saying, that any known interpreter errors should be fully corrected and testsd befors
any adventure s commercially publishedl

48

MOBE ABOUT MESSAGES

Earlier chapters have dealt with how tha PRINT MESSAGE command can be used to print a
message on the screen during an adventurs, and PRINT LOWER MESSAGE which can be used to
print "error” messages near the bottom of the screen If the player attempts anything foolish in his
input. SAS normally imposes a maximum message length of 256 characters per message. In mosst
cases, this is more than adequate, but thera will be times when a longer message length is required

SAS allows you to “chain” any number of messages together by using the PRINT MESSAGE
SUPPRESSED command.

Normally, whenever a messags is printed, after the last row of text {n the meseage has printed, the

screen is scrolled an extra time. This makes sure that there is a blank row of text on-screen before the
next messags to be printed.

For exampls, if message number 1 contained the text "hello", then the commands

Print Maessags [1]
Print Menaage [1]

would result in the text

hallo

halle

being printed on the screen,

PRINT MESSAGE SUPPRESSED works in a similar way to the PRINT MESSAGE command,
except that the screen is NOT scrolled an extra time after the last row of text in the message has besn

printed. This means that commands such as

Print Messaga Suppr;assnd m
Print Massaga [1]

wotuld result in the text

hallo
halle

being printed as If it was a single "paragraph".

PRINT MESSAGE SUPPRESSED can also be used to glve enlarged location descriptions when
used In conjunction with the DESCRIBE command.

Example

Print Massaga Suppresssd [20]
Dascribs

In this example, messsage 20 would contain the first half of the location description text, and the
normal location description definition would contain the second half of the location description text.

In addition to the 1024 messages that can be defined within SAS, it is also possible constantly re-define
a spacial message called message 0. Unllke normal messages which ars restricted to a maximum length
of 256 characters, meesage U0 may have a maximum length of 1024 characters.

49

The text that message 0 contains is defined by the SET MESSAGE ZFEBRO command. This command
has a single parameter which is used to hold a string expression which defines the text which
message 0 will contain,

Most parameters required by the majority of the other commands in the SAS programming language
are numsric parameters. That is to say, they must contain elther a number or a numeric expression.
The parameter required by the SET MESSAGE ZERO command however, ls different. It must

contain a STRING expression made up of at least one of the following string functions which are used
in a similar way to the famillar numeric functions.

MSG(n) This function returns the text contained in message number n. n nesdn't Just be a
number. It may be any valid numeric expression. .

As an example, If message number 1 contained the text “helio”, then the command
Sat Message Zero To [MSG({1}+MSG(1)]
would result in message 0 containing the text "hslichallo",

Message 0 can be printed out in the same way as the other defined messages.

Example

Print Messaga [0O]
Print Message Suppressed [O]
Print Lower Massage [O]

SPC(n) This string function can be used to insert n number of spaces into message 0.

Example
Sat Msessags Zero To [MSG(1]+SIPC[1]+MSG[1]]

this would resuilt In message O contalning the text "hsllo hallo",

Da{n) This function inserts the name of direction number n into message 0. The name of

direction n must have been defined in the Dirsctlon Daflnltlons section of the source editor,
otherwise an interpreter error will be generated.

va(n) This function ineerts the name of verb number n into message 0. The name of verb n

must have been defined in the Yerb Definitlons section of the source editor, othsrwise an
interpreter error will be generated.

M#B(n) This function inssrts the nams of movable object number n into message 0. The name of
movable object n must have been defined in the Movabla Objsct Deflnitions section of the
source editor, otherwiss an interprater error will ba generated. Whether the name of the

movable object includes its prefix depends upon the value held in system flag 17. See the
appendix on system flags for mors detalls on this,

us(n) Thie function inssrts the name of unmovable object number n into message 0. The name
of unmovable object n must have been defined in the Unmovable Objsct Dafinitlons section
of the source editor, stherwise an interpreter error will be gensrated.

STR8(n) This function inserts a single space into message 0, followed by a string representation of
the result of the numeric expression n.

As an example of how this function may be used, imagine a player has a number of coins (the exact
number of coins being held in flag numbser 10) and wishes to count them. If Message 1 contains the text
“You curraently have" and message 2 contains the text " colns.”, By using the command

Sa

Sat Massage Zero To [MSG(1)+STR$(FLG(10)}+MSG(2)]
the complete text detailling how many coins the player currently had could bullt up in message O.

If for exampls, the player was currently carrying 200 coins, then after the above comand was executed,
message 0 would contain the text

You currantly have 200 colns.
As you can see, the flexibility of SAS's expression handling can allow very complex messages to be built up

Message O can aven amend its own text! If for example, message 0 already contained the text "halie", then th
command

Set Message Zero To [MSG(O)+MSG(0)}+MSG(0)]
would result in message 0 contalning the text

hallohsallohallo

S1

USING MEMORY EFFICIENTLY

When you first load up the SAS source editor, you immediately have 727040 bytes of memory
available for your adventure source (794624 bytes If you have an external IMb memory interface
connected). If you develop your adventures from the START starter file, then this figure is further
reduced by 21106 bytes. The amount of free memory avallable for your adventure source might seem
limitless at first, but you should bear in mind the following :

Every command line entered in a source bank will reduce the amount of free memory by exactly 64
bytes, regardless of how long the command ling appears to be on the screen. This applies even to blank
lines, REMARKS and line labels (whether they are referenced by your routines or not). Therefore, if
free space starts to get a bit tight, you can dramatically increase your usable memory by delsting all
blank lines, REMARXKSs (except the very first REMARK in each source bank which cannot be deleted
and is used by the interpreter for reference purposee) and unused iine labels.

Every message defined uses up 256 bytes of memory regardless of how many characters the message
actually contains.

Every location defined uses up 306 bytes of memory regardless of how many characters the location
description text contains and how many exits have been defined in its exits table.

Every line in the vocabulary uees up 16 bytes of memory. You can free memory by deleting any

BREMARKSs present in the vocabulary listing (except for the first one which cannot be deleted, and is
used by the interpreter for refersnce purposes).

Every definition of verb, direction, movable object and unmovable object names uses up 16 bytes of
memory. All definitions of verb and unmovable object names can be safely deleted (thus freeing 16 bytes
of memory for each one that was defined) PROVIDED that your adventure does NOT make use of the
v#(n) and UB(n) string functions in the SET MESSAGE ZERO command. Direction and movable
object names CANNOT be deleted in this way, because certain source commands (such as DESCRIBE)
need to accees the information stored thers. '

When defining messages, locations and names, care should be taken that the item just defined is
CONSECUTIVE to the last defined item (le. ~ you have not have left any blank definitions betwsen your
last defined item and the onse just entered), otherwiss memory space will be assigned to the intervening
blank definitions - despite the fact that they will probably remain unused by your adventurel When
such an item s deleted (by filling its definition with blank spaces), ite memory space will be reclaimed

Including any blank definitions immediatsly below it in sequence, PROVIDED that thers are no existing
{tem definitions above it in sequencs.

Very often certain routines can be re-written to use up less memory. As an sxample, consider the
routine

If Verb = [8] DO

{

If Movable ObJect = [2] DO
{
Print Massags [18]
}

}

which could be re-written as

If Verb = [B] AND
If Movable ObJact = [2] THEN
Print Message [18]

which saves 256 bytes of memory space - enocugh for an extra message definition or 16 extra words in
the vocabulary.

S2

Here are some more examples :

If Flag [10] = [S] DO

{
Print Messags [13]

Jump To End
}

could be re-written as :

If Flag [10] = [S] GOTO F10.5

with the following lines elsewhere in the same source bank

F10.5:
Print Messags [13]
Jump To End

(64 bytes saved)

Careful use of IF.. commands and numeric functions can also bring rewards |

If Movable Object = [2] THEN
Drop Movabls Objsct [2]

i{f Movabla Objsct = [3] THEN
Drop Movable Object [3]

If Movable ObjJect = [4] THEN
Drop Movable Object [4]

could be replaced by
If Movabla Object > [1] AND
If Movable Object < [S] THEN
Drop Mavabls Objsct [MNO]

(in this case, 192 bytes saved)

53

CUSTOMISING SAS

This chapter glves detalls on how you can change some of ths features in SAS to sult your own
personal preferences.

Using BASIC Subroutinses Within SAS

As well as allowing you to write routines using its own programming language, SAS also lets you usa
normal SAM BASIC as welll

You can execute any BASIC command by using the EXECUTE BASIC COMMAND command.

Example
Exscuts BASIC Command : PRINT AT 0,0;"Hsllo from BASIC"

The parameter for EXECUTE BASIC COMMAND may contaln multiple BASIC commands separated
as normal by colons .

Example
Execute BASIC Command : FOR q=1 TO 10:PRINT q:NEXT q

It is up to you toc make sure that what you have defined as a paramster is valid BASIC, as no BASIC

syntax checking is done by the compiler except to detect a leading BASIC line number which is not
allowed, ’

It should be possible to execute most MASTERDOS and MASTERBASIC commands as well, provided that
the relevant DOS/Extendsd BASIC code is pressent in memory {possibly loaded by aitering the complled
adventure's "Auto" BASIC loader). You should bear in mind howsver, that any MASTERDOS or

MASTERBASIC routines used in your own published games will infringe copyright If you include a copy
of MASTERDOS or MASTERBASIC BASIC extension code on your disk as well

Control will be passed back to SAS if a BASIC error occurs (gven the STOP command counts as an
error in this case) or a BASIC RETURN command is encountered without a previous BASIC GOSUB
command. In fact SAS uses a BASIC RETURN command itself to return back to the interprster after
your BASIC command(s) have been executed.

It is posssible to sxscute larger BASIC routines located elsswhere in the BASIC "Auto" loader, by using
EXECUTE BASIC COMMAND to perform a BASIC GOTO, GOSUB or call a PROCEDURE. Your BASIC

lines ehould not use line numbers in ths rangs 1 to 15, ae this area in the BASIC program is reserved
for use by SAS lteelf.

There is about Bk avallable in the BASIC program area for mors BASIC program lines or BASIC
variables. The SAS interpretrer code starts at memory address 32768, so it I8 a good idea to type in
CLEAR 32767 as a direct command before typing in extra BASIC program lines. This will prevent you
from accidentally over-writing the SAS code area. It is usually best to insert your extra BASIC
program lines after you have compiled your SAS source file for the last time (and are reasonably sure
that your adventure is error-free), as sach time you compile an adventure source and save the compiled

adventure to disk, a completely new BASIC "Auto" flle is created.
The following sxample illustrates how a large BASIC subroutine could be called from within SAS,
The routine is called by the command

Exscute BASIC Command : basproc

(“basproc” will be the name of a BASIC PROCEDURE located at BASIC line number 100}

S4

The actual BASIC subroutine located at line 100 of the "Auto” loader would look semething like

100 DEFPROC basproc

110 REM various BASIC commands here
120 REM mors basic commands

130 END PROC

Calling Machine Code Subroutines

Machine code subroutines can be called very easily by using a EXECUTE BASIC COMMAND
command to provide a normal SAM BASIC CALL or USR command.

Example

Executs BASIC Command : CALL 16384

Your machine code may uss any registers, but if interrupts are used, they will not work for most of

the time when SAS Is re-entered, as the Interpreter very often pages out SAM's ROM and runs with
interrupts disabled.

Care must be taken as to where to place your actual machine code routines. Ideally, they could be
placed at the first free 16k RAM page below the DOS (normally RAM page 12 starting at address 212992
on a 256k machine, or RAM page 28 starting at address 475136 on a S12k SAM). You must of course,

ansure that there are at least 16384 remaining bytes (16k) free after your adventure has been compiled
and had any graphics added by the graphics extension program.

Alternatively, your machine code could be placed at the start of RAM page O {address 16384) in the
system heap area. There is about 2.7k available for your code here, though “officlally”, before loading
your code into this area, you should reserve some space by calling the ROM routine "JHEAPROOM" at
address 80106. This will prevent your machine code from belng over-written by the BASIC stack {used
by the GOSUB and DO BASIC commands and PROCEDURES). If your machine code is quite small (say less
than 1k), you will probably get away without having to call JHEAPROOM.

JHEAPROOM should be called with BC containing the number of bytes to be reserved. If the call is
succeasful, then the carry flag ie sst on exit, and DE points to the old HEAP END (the start of the space
just reserved) and HL points points to the new HEAP END {one byte past the end of your reserved
space). If there was not enough room in ths system heap to reserve the number of bytes in BC, then

the carry flag is resst and HL holds the numbsr of bytes that your rsquest exceeded the available
space by.

Using Colour

Normally, the SAS interpreter prints all text on the screen using the rather boring colours of white
PEN on black PAPER. PALETTE position O is used to hold the PAPER colour {normally colour valus 0 -
“pitch black™ and PALETTE position 1 to hold the PEN colour (normally colour value 120 - "turnip").
howevar, it is possible to instantly change the default on-screen colours by using the EXECUTE

BASIC COMMAND command to directly alter PALETTE positions 0 and 1.
Example
Execute BASIC Command : PALETTE O,16:PALETTE 1,96

This sxample would instantly change the on-screen colours, and would result in SAS printing all
subsequent text in a rather nice shade of ysllow on a blue background.

Probably the best place to put such a command would ba as the first command line in source bank 1L

5SS

it Is also possible to defina the colours that messages will be printad out :n, 3y using the EXECUTE
BASIC COMMAND command to provide a normal SAM BASIC PEN or PAPFR command.

Example

Exscutes BASIC Command : PEN S:PAPER 10
Print Message [B0]

This example would result in message number 80 (and any subsequent messages) being printed in the
PEN colour held in PALETTE position S and the PAPER colour held in PALETTE position 10.

The PEN and PAPER colours defined in this way will remain in use untll either they are changed again

by using another EXECUTE BASIC COMMAND command, or until a JUMP TO INPUT or
CONTINUE WITH INPUT command is executed, which will revert back to PAPER 0 and PEN 1.

Using Foraign Characters And User Defined Graphica

As well as allowing you to use normal letters In messages and location descriptions, SAS also allows

you to use forsign characters (useful if you are writing software for use abroad) and/or user defined
graphics (known as UDGs) as well.

128 ¢ SYM+32 143 A CTRL +8 158 Bk SYM+B
129 U SYM+1 144 E CTRL+E 159 # CTRL +F
138 € SYM+2 145 & CTRL +% 188 & CTRL +2
131 8 SYM+3 146 FE CTRL +AR 181 i CTRL +K
132 & SYM+4 147 © CTRL+0 182 & CTRL + =
133 & SYM+5 148 & SYM+0 163 4 CTRL +H
134 & SYM+ 68 149 & CTRL+P 184 [SYM+N
135 ¢ SYM+7 158 U CTRL +U 185 N SYM+1I
136 € CTRL +7 151 U S8SY¥YM+y 166 & CTRL +:
137 € CTRL+8& 182 Y CTRL+Y 187 2 CTRL +:
138 ¥ CTRL+5 183 © CTRL+L 1868 ¢ SYM+C
139 1 CTRL+4 1854 U CTRL +7T

149 1 CTRL +3 185 ¢ CTRL +0C

141 i CTRL +2 156 £ S8YM+D

142 A CTRL +1 1B7 ¥ SyYyM+y

Flg 15. - The forsign character sat.

Figure 15. shows the entire forelgn character set that is available from the SAS editor, along with
their character codes and the key combinations which are required to produce the forelgn charcter
when sntering text in a data entry field,

Altogether, there are 41 different foreign characters available with character codee ranging from 128 to
168 (the normal printable character set rangee from a space - charcter 32 to the copyright symbol -
character 127).

If you wish to uee foreign characters in your adventures, then your compiled adventure diek must also
contain the file "fontEDITOR" which is found on the "Utilitles” disk. It is this code file that contains the
actual definitions for each foreign charactsr.

You will also have to modify your compiled aventure's BASIC “Auto” loader program so that it loade up
the forelgn character font before running the adventurse. The best way to do this, is to type

MERGE “flisnams”

56

‘Whera "fllansma” represents ths "Auto” flle’s true fllename. This “vill ioad in "% compilad adventura's
"Auto" loader and suppress it from auto running.

Now insert the following BASIC line
S LOAD "fontEDITOR" CODE UDG CHR$ 128

And re-save the modified program back onto the disk by typing

SAVE "fllanama” LINE 1

If you do not wish to use foreign charactars in your adventurs, you may use some or all of the space
which they occupy to hold UDGs instead. To design your UDGs, you can use the font editor in the
FLASH art program, or one of the many UDG designing programs which are widely avallable (one of
which is to be found on SAMCO's SAMDOS disk) If your adventurs is to use either 85 or 42 text
columns, then there will be some limitations in designing your characters - See the next section

"Using
Different Text Fonts" for more dstails,

Each forelgn character/UDG definition uses up 8 bytes and are stored consecutively at address 8:5490
upwards,

Care should be taken to ensure that the length of the code being loaded is not greater then the number
of UDGs/forelgn characters multiplled by eight. This prevents accldental over-writing of other areas of
computer memory such as the PALETTE table. Fonts saved by the FLASH art program will ba no less
than 1024 bytes long (no matter how many charcters have been defined) and may well need to be
shortenad accordingly before loading into your compiled adventurs.

If for example, you wanted to load only two UDGs as charcters 160 and 161, you could use BASIC
commands along the lines of

LOAD "UDGcods" CODE UDG CHRs$ 160

to load the code into the correct place in memory. In this case, the actual code loaded should be 16
bytes long (8 bytes for each UDG).

If you were loading an entire block of 41 UDGs, the destination address would be UDG CHRS 128 and the
code length would be 328 bytes (Bx41 = 328).

While entering UDGs into text in the source editor howsvar, you should remember that they will still

be represented on the screen as forelgn characters, soc make a note of the character numbers of the
UDGs you are using.

One very important note to remember is that if you are using either forelgn characters or UDGs in
your text, you should NOT use text compression while complling your adventure. This is becauss the
compller uses characters numbered 128 upwards as text expansion tokens, and if you try to use text

compression, you will end up with a strange mess of unintended text where your foreign
characters/UDGs should have beenl

Using Differant Text Fonts

It is possible to totally re-define the design of the 96 normal text characters used in an adventurs.
This can add greatly to the general atmosphere of the game. You could for example, use a Western

style text font If your adventure was set In the Wild West, or a space age font if your adventurs was
set on another planet.

Again, you can use the font designer in FLASH or a normal UDG designer program to design your text
font. As with UDGs, sach character definition takes up B bytes, and if a full character sst is designed
(from the space to the copyright symbol), the font code would be 768 bytes long (8x96 = 768) and would
be loaded by using a BASIC line in the compiled adventure's "Auto® loader such as

57

3 LOAD “"font" CODDE UDG CHR® 32

As when designing UDGs, sach character is defined as 64 pixels stored in 8x8 grid such as the one
shown in Figure 16. which illustrates a typical pattern used to represent the letter "A".

However, if your adventure is using elther 85 or 42 text column

mede, then any pixels defined in the shaded area shown in Figurs
16. will not be shown on the screen at alll (this is price we have to
pay for being able to fit so many charctera onto the screen at oncs).
Thereforse, care is neaded when defining characters for use In these
text modes {the standard SAM character sst is suitable for use in
any text column mode). In addition, cars should be taken so that
there is at least ons blank column of pixels to one side of each
defined character. This "margin® prevents printed characters

becoming cluttered together making the text unreadable.

Useful Addresses To POKE

Flg. 16,

This section lists various filxed address within the interpreter machine code which can be altered by a
BASIC POKE command in the compliled adventure's "Auto” file before the adventure is run, in order to
glve useful results.

ADDRESS

83000

89001

893002

89003

85004

8300C

83000

8900E

8:300F

83010

&9011

NAME

STRIP.CHR1

STRIP.CHR2

CURSOR.CHR

PROMPT.CHR

MORE.TXT

PRMPT.INV

BEEP.FLG

INP.CAPS.FLG

LMESS.INY

LMESS.SPC

LMESS.CAPS

NO. OF BYTES

)

(1)

(1

(0

(8)

(M

(1)

(1

M

(1

M

COMMENTS

Character used for window dlviding strip at aven
charactsr positions. Initlally a dash "~" charactar.

Second charscter ussd for window dividlng strip at
odd character positions. Initlally a dash “-" charactar.
If B5 text column mode Is belng used, then STRIP.CHR1
and STRIP.CHRZ should contaln the sams valus,

Character used as the cursor. Initlally an underline
charactsr "_",

Charactsr used as an Input prompt. Initially a
greatar-than charscter ">".

Taxt displayad whan the upper window flils up with
taxt. Initially the text " Mora + ",

If non-zero, the Input prompt Is printsd In Inverss,’
Inltial valus Is 1.

If non-zero, a BEEP Is made every time a player typas
a character In his Input, Initial value Is 1.

If non-zaero, all characters typed-In sppear In
upper-cass. Inltlal value Is O.

If non-zero, text printad by the PRINT LOWER
MESSAGE command Is In Inverss. Inltial valus [s 1,

If non-zero, text printed by tha PRINT LOWER
MESSAGE command Is padded out by 2 singla space
sach slds, Initial valus Is 1,

If non-zero, all text printsd by s PRINT LOWER
MESSAGE command is printed In uppsr-cass. Initial
value Is 1.

58

ADDRESS

89012

&3013

83010

8901E

839028

89029

83033

&9034

8903E

&903F

83049

89044

&F530

&F62F

&F64D

8F74C

&FB4B

8:F94A

&EFS4

NAME

A.MSG.LEN
A.MSG
AN.MSG.LEN
AN.MSG
SOME.MSG.LEN
SOME.MSG
THE.MSG.LEN

THE.MSG

AND.TXT.LEN

AND.TXT
BANK.NO

LINE.ND

FLAGS
SFLAGS
MOBJ.LOCS
uosJ.Locs

CARRIED

SCORE.MAP

RAMSAVE.BUFF

NO. OF BYTES

M

(o)

(n

(10)

Mm

(10)

(1

(10)

(1)

(10)
(0
2)

(255)
(30}

(255)
(255)

(255)

(100)

(1150}

COMMENTS

Length of text used for the "a " movable objact prafix,
Initlal valus Is 2,

Text used for the "a " movabla object prafix. Initially
the text "a ",

Length of text used for the "an " movable objact prefix.
Initlal value Is 3,

Taxt usad for the "an " movable objact prefix, Initlally
the text "an ",

Langth of text used for the "soms " movable objact
prefix. Initial valug Is 5,

Text used for the “some " movable objact praflx, Inltially
the text "some ",

Length of text used for the "the " movable obJect
prefix, Initlal value is 4.

Taxt used for the "the " movable object prefix. Initlally
the taxt "the ",

(By altering tha abovse, the user can af fectivaly
re-deflne his own movabla objact prafixas)

Length of text used for "and " whan listing movable
objects,

Text used for “and " when listing movable objects.
Source bank number of the currant SAS command.
Command line numbar of the current SAS command.

(the following area Is usad to hold the gama's current
status, and Is saved by the SAVE sourcs command)

Area used to stors values of flags.

Araa used to stors values of system flags.

Current locations of movabls objscts in the gama.
Current locations of unmovable objects In ths gams,

Arsa used to Indicats whathar a movabls objact Is

currently carried by the player. 1 = object is carrlsd, O
= object Is not carrled,

Currant Score Map.
(The following area Is used to store the current gamse

status by the RAMSAVE command, and Is assentlally
a copy of ths above area)

BAMSAVE buffer arss.

S9

GLOSSARY OF SOURCE COMMANDS

This appendix lists all source bank commands in alphabetical order, along with any parameters required,
and at least one example of the command in normal usage.

The parameters are reprasented as follows :

n - numeric expression

Numeric exprsseions may consist of numbers restricted to the rangs 0 to 255 Inclusivs (somstimes when
used In conjunction with string functions, the range Is extended to O to 1024 inclusive), arithmstic (+ and -)
and numeric functions which are detalled below. Expressions ars strictly evaluated from left to right, and

brackets except as part of a function name are not permitted. Numeric expressions may be as complex as
entry space will allow.

Numeric Functions :

VNO

DNO

MNO

UNO

PNO

LNO

CNT

FLG(n)

SFLG(n)

RND(n)

Rsturns the number of the last verb msntioned in the last player's input. If no verb was
mentioned, then YNO rsturns a value of zero,

Rsturne the numbser of the last direction mentionsd in ths last playsr's input, If no
dirsction was mentionsd, then DNO rsturns a valus of zsro,

Returns the number of the last movable object mentioned in the last player's input. If no
movable object was mentioned, then MNO returns a value of zero.

Returns the number of the last unmovable object mentioned in the last player's input. If no
unmovable object was msntionsd, then UNO rsturns a valus of zero.

Returns the number of the last preposition mentioned in the last player's input. If no
preposition was meantioned, then PNO returns a valus of zero.

Returns the location number of the current location.

Returns the current counter value used by the FOR/NEXT command. If accessed outside
a FOBR/NEXT loop, the result can be unpredictable,

Returns the contents of flag number n. n may bs either a numbsr in the range 1 to 255 o

another valld numeric sxpreselon. The intsrpretsr will display an srror msssags if ths valt
of zero is used. -

Returns the contents of system flag numbsr n. n may be either a number in the range 1 |

30 or another valld numeric expression. The interpreter will display an error message If tt
value used is zero or greater than 30,

Returns a random number in the range 0 to n. n may be sither a number in the range 1 1

255 or another valld numeric sxpression. The interpreter will display an error message if
the value of zero ie used.

Some examples of valld numeric expressions :

23+YNO

FLG(B)+1+DNO

FLG({B+FLG(11))-SFLG(20)

10+FLG(18]-AND(3)

FLG(RND(FLG(B88+2)+1))-UND

s - string sxpression

String expressions may consist of string functions which are detailed below and arithmetic (+ only). Agaln,
expressions ars strictly evaluatsd from left to right, and brackets except as part of a function namse ars
not permitted. String sxpressions may bs as complex as entry space will allow,

String functions :

MSG(n}

SPC(n)

STR&(n)

vé(n)

D&(n)

M@(n)

Us(n)

Rsturne the complets meesage numbsr n. n may sithsr be a number in the rangs 0 to 102

or a valld numeric expression.The intsrprster will dieplay an error messags if mssseage
number n has not been defined.

Returns a string consisting of n spaces. n may be a number in ths range 1 to 1024 or a

valld numeric expreseion. Ths interprster will display an srror message If the value of zer
s used.

Converts the numsric expression n into a string (similar to SAM BASIC's STR# function).
may be a numbsr in the range 0 to 1024 or a valld numeric sxpreseion resulting in a valu
in the rangs 0 to 65535. A leading space is added to the string representation of n.

Returns the nams of verb number n. n may be a numbsr in the range 1 to 255 or a valid

numsric expreesion. The interpreter will display an srror messags If the name of verb n
has not been defined, or n is outside the range 1 to 255,

Returns the name of direction number n. n may be a number in the range 1 to 59 or a
valid numeric expression. The interpreter will display an error message if the name of
direction n has not been defined, or n is outside the range 1 to 93,

Rsturns the name of movable object numbser n. n may be a number in the rangs 1 to 255

or a valld numeric sxpression. The interptreter will display an error message if the name
of movable object n has not been defined, or n is outside the range 1 to 255.

Returns the nams of unmovable object number n. n may bs a number in the rangs 1 to
255 or a valld numeric expression. The interpreter will display an srror messags if the
nams of unmovable object n has not besn definsed, or n is outside ths range 1 to 255.

Some sxamples of valid string exprsssions :

MSG(11)

MSG(13)+MSG(14)

M#(11-FLG(30))+SPC(1)+MSG5(1000)

MSG(88+FLG(99-SFLG(1)+2)-1)+SPC(1)+STRS$(FLG(B))+MSG(3)

18 - line label

Line labels may consist of up to eight of any printable characters. Line labels may not be duplicated within
the sams source bank.

c - comparison

Used in IF.. commands, comparisons may be any of the following :

= Is squal to

<> Is not squal to

< Is less than

> Is greatsr than

>= or => Is greater than or equal to
<= Or =< Is less than or equal to.

a - action to take

Ueed in all IF.. commands. a is the action to taks if the IF.. command proves true, and ls one of the
following :

G;l® (Goto)} Jump to the line label 16,

S,18 (Gosub) Call ths subroutins located at lins labsl 1@.

T (Then) Exacute the following source lins, else ignore it.

D (Do) Exscuts the following source linss sncloged within a structure, elsaiignora them.
O (Or)

Chain with a following IF.. command.
A (And}) Chain with a following IF.. command,

Any number of IF.. commande may be chained together with sither And or Or, creating in sffect a much
longer singls 1F.. command, However, both And and Or cannot bs pressnt in the sams chain, Instead, a
Then could be used to "connsct” two chains togsthsr. For exampls, instsad of -

If Movable Object = [B] OR
If Movable Object = [9] AND
If At Location [10] AND

If Carrled [11] GOTO JUMP

Use -

If Movable Object = [B] OR
If Movable Object = [9] THEN
If At Location [10] AND
If Carried [11] GOTO JUMP

ast® - character string

A string of any printable characters. Used in the REMARK and EXECUTE BASIC COMMAND source
commands.

Act Upon Direction

This command chscks the exits tabls for the current location for the exit corresponding to the last
direction which was mentioned in the last playsr's input (the valus DNO),

If a valld connsction was found, then a "movs" is made to the appropriate new location. LNO will equal

the nsw location number, the exits table for that location will be transfered and a Jump 18 made to the
start of sourcs bank 4.

If the connsction was not valid, or no direction was specified in ths last player's input (in which cass
DNO will equal zsro), then no action is performsd.

Example

Act Upon Directlon

Add Direction [ni] Leading To [n2]

This command adds a connsction to the sxits table for the currsnt location. The direction n1 will lead to
the location n2.,

If a connectlon using the dirsction nt already exists in the sxite table, then the new addition will taks
precedence while it Is in force.

However, it is important to remember that this new addition to the exits table s temporary and will
only last until a move is made to anaother location. If you wish this change to become permanent, then it
ls probably best to make this command conditional to the value of a flag (Indicating that the new exit is

permanent from now on) and place the command in source bank 4, so that the "new" exit will be added
each time the location is re-entered.

Example

It At Locatlon [35] AND
If Flag [10] > [O] THEN
Add Dirsctlon [1] Leading To [S0]

Blank Line

Strictly speaking, this is not a command at alll This option from the CONTROL menu, simply allows the
Ineertion of a blank line into the source listing. Thie can maks the listing a lot easler to read and follow

Inserting a blank line will have no effect at all on the compiled adventure code apart from increasing it:
overall length by three bytes.

Example
Remark : ses This subroutine prints message 1 ese

SUBR.1:
Print Messags [1]
Return

Remark 1 #«« This subroutine prints messages 2 sews
SUBR.2:

Print Message [2]
Return

Continue With input

When a sentence has been entered by the player, the interprater usually scane and parses the input
until the first occurance of a comma, full stop or the worde THEN, AND or the ampersand character
(&) Thie command allows the intsrpreter to continue evaluating the player's input from the polnt where
the last comma, full stop, THEN or AND wase found. If there are no mors full stops, commas ANDs or
THENe remaining in the input, then the command bshaves as a JUMP TO INPUT command would

and the Interpreter awaits a new Input from the player.

This very powsrful feature enables the player to sntsr complex inputs such ae
TAKE THE ROPE AND EXAMINE IT THEN DROP IT

or to sntsr multiple commande using full stope or commas such as

TAKE ROPE, EXAMINE ROPE, GO N, E, W. CLIMB LADDER.

In both casses, each part of the player's input will be acted upon In turn.

When using full stops or commas, it is important however that there is at least one space before the
following word, otherwise the intsrpreter will assums an {nput euch as

EAST,NCRTH

to bs a singls wordi

In the case of full stops or commas, the functions VNGO, DNO, MNO, UNO, and PNO will all be set to
return a valus of zsro before the remaining text is scannsd. ’

AND, THEN and ampsrsand (&) howevsr, maintain the previous valuse of VNO, DNO, MNO, UNO
and PNO before any remaining text is dealt with,

This would allow an input such as

TAKE THE APPLE AND EAT IT

to be understood, but with

. TAKE THE APPLE. EAT IT

the interprster would have problems in deciding exactly what the player was suppoeed to eat as MNO

would now return a value of zero.

The worde AND, THEN and ampsrsand (&) should not be definsd by the adventure author in the
Vocabulary ssction of the sditor, as the compiler automatically adds theee words upon compllation.
Probably the best place to use CONTINUE WITH INPUT le as the last command in source bank 3.
Exampls

Continue With Input

64

Decrement Flag [n]

This command decreases the value held in the flag n by ons, If flag n alrsady holds zero, then the value
of zero will be maintained.
Example

Decrsment Flag [10]

Describe

This command eimply describes the current location, listing all exits and any movabls objects pressnt.

If system flag 6 contains a non-zsro value, then DESCRIBE will omit printing the exit details,
similarly, the lieting of any movable objects present can bs suppressed by glving system flag 7 a
non-zero value. The sxact way that any movable objects pressnt ars displaysd will depend on the value
of system flag 9 (sse the appendix on system flags for mors details on this).

and

Although ths most obvious uee of this command would bs in source bank 4, eo that any new locations
ars described as they ars sntsred, it would bs ussful to use this command in other banks,

for example
linking it to a "Look" verb in bank 2.

Exampls

Describe

Descrihe. Location [n]

This command works sxactly the same as DESCRIBE, with systsm flags 6, 7 and 9 having the same

effect, but instead of describing the current location, this command describes location n as if Yyou were
already thersl

Possible uses of this command could .be if you wanted to "Lock” through a door etc to "see” what was on
the other sidel

Of course,

Describe [LNO]

would have exactly the same effect as the shortsr (and mors memory efficient)
Describe

Exampls

Describa [B0]

63

Drop Movable Object [n]

This command enablss the player to “drop” the movabis object n. Once “dropped”, the movable object is
placed in the current location, Syetem flag 1 s aleo decreased by ons.

No action s performed if movable object n is not currently being carried by the player.

Examplse

Drop Movable Object [MNO]

Execute BASIC Command : st$

This very powerful command enables the user to effectively create and call his own BASIC subroutinss
from within the compiled adventurs environmenti Customised machine code routines may aleo be
executed by using this command to provide a normal BASIC "CALL" or "USR" statsment. Of courss, any
machine cods called would have to be already pressnt in the memory, but you could even uss this

command to "LOAD" the machins code into memory in the first placel (although it might be bstter to
modify the "Auto” BASIC loadsr instead).

The sxpression st® may contain multiple BASIC statements separatsd as normal by colons, but st®
must not contain a leading BASIC line numbsr,

If MASTERBASIC, MASTERDOS or any other sxtsendsd BASIC commands are used, then the uesr must of

courss ensure that the appropriats DOS or sxtenelon code ls pressnt in memory first. (again, by probably
altering the complied adventurs's BASIC "Auto" fils)

It is up to the user to sneurse that the st@® expression is valld BASIC, as no BASIC syntax checking is
done by the compllisr except to detect a leading BASIC line number, If a BASIC error occurs, then control
will pase directly back to ths sourcs command following the EXECUTE BASIC COMMAND
command where the problem occured, reeuming control after first displaying an interprster srror
messags - Even STOP counts as an error in this case.

Once your BASIC command(s) have been performed, control is passed back to the nsxt sources command in
the current bank.

Example

Exacuta BASIC Command : CLS : PRINT AT D0,0;"Hallo"

Exit Structure

This command will jump directly to the end of the current structure.

If placed outside a structurs, this command will generate an srror message within the source compiler.

Example

If Flag [20] = [1] DO
{
If Flag [21] > [O] THEN
Exlt Structurs
Print Maessage [39]
}

66

For / Next : Start [nl] : End [n2] : Step [n3]

This command allows a section of source to be loopsd a number of timses in a similar way to SAM
BASIC's "FOR" command.

n1 should be the start valus of the loop, n2 the end value and n3 the step value. All three of these
must be spscified.

The FOR / NEXT command should bs immediatsly followed by a structure in which the actual
looping will takse place.

while ths loop is sxecuting, the numeric function CNT can be used to access the current loop countsr
value.

FOR / NEXT loops may not be neeted. If nested loops ARE required (unlikely), then a similar effect
may bs achieved by using a flag to hold the loop counter and a GOTO command to jump back to ths
looping point. An example of such a nested loop is shown below,

Example

For / Next : Start [1] : End [10] : Stap [1]
{
Print Messags [CNT]
}

Nested loop example

Set Flag [1] Te [10]
OUTER.LP:
For / Next : Start [1] : End [20] : Step [1]
{
}
Decrement Flag [1]
If Flag [1] > [0] 5070 OUTER.LP

Gosub 1$

Thie command allows you to call subroutines in a similar way to normal SAM BASIC. 1® must bs a valid
line labsl located within the current source bank. One bank may NOT call a subroutine locatsd within
anothsr source bank.

GOSUBs may form a part of all of ths IF.. commands to form in sffect a mors scconomical single
comrmand.

The actual subroutinses are alwaye bsgun with a line label and terminated by a RETURN command.
Subroutines may be nested up to a maximum of 255 Isvsls, Once a RETURN command is sncountsrsd,
control is paeeed back to the command following the one which originally called the subroutine.

The user must snsurs that the normal program logic bypassss any subroutines located within a bank, as
a RETUBN command sncountersd without a previous GOSUB will cause a run-time srror msssage in
ths interpreter.

Example (1)
Gosub SUBR.1
Example (2}

it Flag [20] > [0] GOSUB SUBR.1

Goto 19

Thie command allows you to jump directly to the line label 1@ located in the current source bank. You
may NOT use GOTO to jump from ons source bank to another. Instead, use the JUMP TO END,
JUMP TO INPUT, ACT UPON DIRECTION and MOVE TO commands.

It 18 not permitted to GOTO a line label located within a structure, although using GOTO from
within a structure to jump to a line label located outside structures is fine.

As with GOSUB, GOTO may form a part of all of the IF.. commands to form in effsct a mors
scconomical single command.

Example (1)
Gote LABEL.]
Exampls (2)

If Flag [10] = [1] GOTO LABEL.A

If At Location [n] a

This command ie ueed to check if the player s at location n. If sg, then action a is performsd,
otherwise no action is taken.

Example

If At Locatlon [20] GOTO L.LABEL

If Carried [n] a

This command is used to check if the player is currently carrying movable object n. If so, then action
a is performed, otherwise no action is taken.

Example

If Carried [18] THEN
Exlt Structurs

If Chance [n] a

This command is used to psrform actione conditional to the result of a random number in the range
between zero and the numeric expression n. If the random number gensrated ls zero, then action a is
performed, otherwiss no action is taken. n must be in the range 1 to 255, The interpretsr will dieplay
an error message If the value of zero is used.

So in sffect, this command will result in a one in n+i chancs of action a belng performed. In the
sxample below, the message will have a one in four chance of being printed.

Exampls

If Chance [3] THEN
Print Message [25]

68

[I VU e -
i

)

This command is used to compare the number of the direction mentioned in the last player's inpu:
(the value returned by the numeric function DNO), against the numeric expression n using the
comparison c. If the comparison holds trus, then action a s performed, otherwise no action is taksn.

Example

If Dirsction > [0] THEN
Act Upon Direction

If Direction Not Valid a

Thie command looks in the current location's exits table for the exit corresponding to the diraction
mentioned in the playsr's last input (ths value returned by ths numsric function DNO),

If a valid connsction wae NOT found (or no dirsction was mentionsd - in which casse DNO will
return a valus of zero), then action a is psrformed, otherwiss no action is taksn.

Example
I Diraction Not Yalld GOTO DIR.BAD

Act Upon Dirsction
DIR.BAD:

If Flag [n] ¢ [n2] a

This command i{s used to compars the contents of flag n1 againet the numsric expression n2 using

the comparison c. If the comparison holds true, then action a is performed, otherwise no action is
taken.

Example

If Flag [BO] = [FLG(B1)] GOTC JUMP

If Location ¢ [n] a

This command le used to compare the number of the current location {the valus returned by the
numeric function LNO]) against the numeric expression n using ths comparison c. If the comparison
holds true, then action a Is performed, otherwise no action is taken.,

Of course, the instruction

If Locatlon = [4] GOTO JUMP

would have sxactly the same effect as the shorter (and more memory efficient)
If At Location [4] GOTO JUMP
Example

If Location > [S0] THEN
Increass Scors [LNO]

63

[f Movable Object ¢ [n] a

This command is used to compare the number of the movable object mentioned in the last player's
Input (the value returned by the numeric function MNO), if any, against the numeric expreseion n
using the comparison c. If the comparieon holds true then action a is performed, otherwiss no action
is taken.

Example

If Movable Object = [2] GOTO MO0.2

If Movable Object Not Present [n] a

This command is used to check whether the movable object n {8 NOT present in the current location.
If the movable object is indeed not present, then actlon a is performed, stherwise no action is taken.

This command could be useful if the user wanted to detect whether the player was trying to pick
up a movable object that was not actually presentl

Example

If Movable Object Not Present [MNO] DO

{
Print Lowsr Maessage [100]
Jump To Input

}

If Movable Object Present [n] a

This command is used to check whether the movable object n is in the current location. If so, then
action a {s performed, otherwise no action s taken.

Again, this command could be used in checking that a movable object was actually present before
trying to pick it upl

Example

If Movable Objact Presant [MNO] THEN
Take Movable Object [MNO]

If Not Carried [n] a

This command Is ueed to check whethsr the player is currently NOT carrying movable object n. If

the player is Indeed not carrying the movable objsct, then action a is performed, otherwise no action
is taken.

This command could be useful in checking whether the player is trying to use an object which he is
not actually carryingl

Example

¥ Not Carrled [MNO] DO
{
Print Lowsr Msssage [30]
Jump To input
}

70

If Preposition ¢ [n] a

This command Is used to compars the number of the preposition mentioned in the last player's
input (the value returned by the numeric function PNO), {f any, against the numeric expression n

using the comparison c. If the comparison holds true, then action a is performed, otherwise no
action s taken.

When ueed along with the IF VERB command, this command can bs used to alter thes verb
number when a certain preposition is present. Coneider for example, the phrases

TAKE
and
TAKE OFF
which obviously have different meanings.
Example
Remark : =ea Convsrt one verb Into anothsr whan a preposition Is pressnt sae

If Yerb = [B] AND

If Preposition = [2] DO
{
Set Yerb To [20]
Sst Preposition To [0]

}

If System Flag [n1] ¢ [n2] a

This command is used to compare the contente of system flag n1 against the numeric expreesion

n2 using the comparison c. If the comparieon holds true, then action a is performed, otherwiss no
action is taken.

n1 must be a valid numeric expression in the range 1 to 30, otherwise the interpreter will display
an error message.

Example

It System Flag [1] > [9] GOTO LABEL

If Unmovable Object ¢ [n] a

This command i{s used to compare the number of the unmovable object mentioned in the player's
last input (the value returned by the numeric function UNO), if any, against the numeric

expression n using the comparison c. If the comparison holds trus, then action a is performed,
otherwise no actlon is taken.

Example

if Unmovable Object = [18] GOTO LAB.U18

71

. unmovaole Ubject Noc Present [nj a

This command s used to check whether the unmovable object n is NOT prssent in the current
location. If the unmovable object is indeed not present, then action a i{s performed, othsrwise no
action is taken.

This command could be ueseful If the user wished to print a response to the player trying to
sxamine etc, an unmovable object that was not present in the current location.

Example

If Unmovabls ObJect Not Pressnt [UNO] DO

{
Print Lowsr Messags [110]

Jump To Input
}

If Unmovable Object Present [n] a

thie command Is used to check whether unmovabls object n is in the current location. If go, then
action a is psrformed, otherwise no action is taken.

Again, this command could be used to check whsther an unmovable object wae actually present
befors trying to examine it etc.

Example

I1f Unmovable Object Presant [UNO] AND
it Verb = [18] DO

{

Print Masssage [30]

Goto ¥18.U

}

If Verb c [n] a

this command is used to compare the number of the verb in the last player's input (the value
returned by the numeric function VNQO), {f any, against the numeric sxpression n ueing the
comparison ¢. If the comparison holds true, then action a is performed, otherwise no action is taken.

Example

It Verb = [10] GOTO VERB.10

72

Increase Score [n]

This command le used to increase the player's score at various points throughout the game, n must
be a numeric expression in the range 1 to 100. The interpreter will display an error message if
valuses outside this range ars used.

n represents a one byte position in a 100 byte long "Increase score map" which iIs Includsd in the
saved game data when the SAVE and BAMSAVE commands are used,

When an INCREASE SCORE command is executed, it first checks if the contents of the byte at
position n in the score map s non-zero. If so, then no further action le taken. If howsver, the byte
does contain a value of zero, then the contents of the byte are increased to a one and the contente of
system flag 2 (which is used to hold the player's current score) are also increased by one, thus

increasing the playsr's score by “one percent” (At the start of each new game, each byte In the score
map is initialised to zero, as is eystem flag 2, so representing a scors of nil psrcent).

If the user decldss that the score should be increased at a certain point in the game, by for exampls,
opening a certain door, then by using a scors map position, we can ensure that the player cannot
achleve a score of one hundred percent by eimply opening and closing the door one hundred timesi
Instead, the score will only be increased the FIRST time that the door is opened, as subssquently, the
score map position will now hold a non-zero value,

The user can If he wishes, simply manipulate the currsnt score by directly altering the contents of
system flag 2 by using the SET SYSTEM FLAG command, but care must be taken to eneurs
that the contsnte of the flag remain in the range 0 to 100 (otherwise scoree of 101X etc may be
displayed Iili).

The player’e current score can be displaysd by ueing the SCORE command. The SCORE command
simply looke at the contents of system flag 2 for the current score percentage.

Example

Increase Score [10]

[ncrement Flag [n]

This command increases the value hsld in the flag n by one. If the flag already holds a value of 255,
then the valus of 255 will be maintained.

Example

Incremant Flag [S]

73

[nventory

This command is used toc display an inventory of all movable objects currently being carried by the
playsr. The preciae way that the list of carried objects Is displayed on the screen, depsnds on the

contents of eyetem flag 3. If syetem flag 9 contalns a value of zero, then INVENTORY will display
each movable object carried on a new line, for sxample

Soms matchss
An appls
A large stick

If however, system flag 9 containe a non-zero value, then the same objects would be displayed as

Some matches, an spple and a large stick.

If System flag 8 contalns a non-zero valuse, then any movable object prefixes such as “An", "Some" stc.
will not be printed.

System flag 10 should hold the number of a meesage which containe text along the lines of "You have
with you" or "l am currantly carrying:” etc. which will be printed on scresn before the actual list of
carried objects. If system flag 10 contains zero, then no such message will be printed.

Syetem flag 11 should hold the number of a message which contains text along the lines of "Nothing st
the moment” which wiil be printed If the player {e not actually carrying any objects at all at the
moment. Again, if system flag 11 contains a value of zero, then no such message will bs printed.

You should remember that sincs system flags can only contain valuee in the range 0 to 255, the
messages that system flags 10 and 11 refer to must be messages with numbers lees than 256l

Ideally, system flags 9, 10 and 11 should all be set with appropriate values in source bank 1, which is
sxecuted before the game actually begine, but you can constantly re-define the values held in thess
system flags from within the rest of the adventure source throughout the game if you wish,

Example

It Yerb = [S] DO
{

‘Invsntory
Jump To Input

}

Jump To End

Thie command simply forces a direct jump to the first command line in eource bank 3 whers logic
routines common to all locations and all circumstances within the game (low priority conditions) are
executed.

Example

Jump To End

74

Jump To Input

This command forces a dirsct jump to the input routine which awaits the player's next Instruction
Input. However, unllke the CONTINUE WITH INPUT command, any remaining muitiple
commands in the player's last input which have not yet been dealt with are ignored.

Once the player has typed his next instruction and pressed "RETURN", each word in the input is
checksd against the list of words in the vocabulary, and the scurce code s entered at the first

command line in source bank 2 as normal, where the user would place his main input evaluation
routines,

1t 1s often convenient to use this command after a PRINT LOWER MESSAGE command
reporting an "error” such as "You can’t do that" or “You cannot go that way" etc.

Example

If Dirsction Not Valid DO

{
Print Lower Msssags [80]
Jump To Input

}
Line Label 1$

This is not really a command at all. it should be thought of as a "marksr" marking the start of a
specific section In the source listing. 18 should be a string of up to eight characters (most printable
characters can be uesd) Line label names cannct be duplicated in the same source bank.

Both the GOTO and GOSUB commands require a valid line label to jump to. Extra line labels can
be used as useful reference points within the listing, as the editor will allow you to jump directly to
them. Lins labels have absolutely no effect on the final compiled adventure except to Increase its
overall length by three bytes for every line label used,

Example

LABEL.A:
List Exits

This command is used to list the exits available from the current location (Including any exite .
which have been added by the ADD DIRECTION command). If there are no exits available from
the current location, then no action is taken.

The names of the directions printed will be accessed from the “Direction Definitions" eection of the

editor. The interpreter will display an error message If the name of the appropriate direction has
not been defined.

System flag 14 should hold the number of a message which contains text along the lines of "Exlts
from hera are:" which will be printed on screen before ths actual list of avallable dirsctions, If
system flag 14 contains zero, then no such messags will ba printed.

You should remember that since system flags can only contain valuss in the range 0 to 255, the
meseage that syetem flag 14 refers to must be & measage with a numbsr less than 256l

Ideally, system flag 14 should be set with an appropriate message number in source bank 1, which is
executed befors the game actually begins.

Example

List Exits

75

List Movable Objects Present

This command Is used to list any movable objects which are present in the current location. If no
movable objects are actually present, then no action le taken.

The precise way that the list of present movable objects is displayed on scresn depends on the
contents of system flag 9 (see the appendix on system flags for more detalls on this),

The names of the movable objects printed will be accessed from the "Movable Object Definitions"

section of the editor, The editor will display an error message if the name of the appropriate movable

object has not been defined.

System flag 1S should hold the number of a message which contains text along the lines of "Movabls

objscts prasent are:” or "You can sss hers:” which will be printed before the actual list of present
movable objects. If system flag 1S contains zero, then no such message will be printed.

You should remember that eince system flage can only contain values in the range 0 to 235, the
message that system flag 1S refere to, must be a meseage with a number less than 256}

Ideally, system flag 1S should be set with an appropriate message number in source bank 1 which is
exscuted before the gamse actually bsgins,

Example

List Movable Objscts Prsssent

Load

This command enables a saved game position to be loaded from caesette or diek (according to SAM

BASIC's DEVICE status), enabling a player to resume play at the point {n the game where the saved
game position was praviocusly saved.

It s usually a good idea to follow this command with a DESCRIBE (to describe the new loﬁation]
and JUMP TO INPUT commandes,

Example

It Yerb = [12] DO

{
Load

Describe
Jump To Input
}

Move to [n]

This command moves the player directly to location n. LNO will now return the new location
number, and a jump I8 made to the firet command lins in source bank 4.

Example

Move To [12]

76

NOT Flag [n]

This command alters the contents of flag n as follows:

If the contents of flag n has a value of greater than zero, then it will be madse to hold a value of
Z8ro,

If however, the contents of flag n are already zero, thsn the flag will be made to hold a value of
one,

This command would be useful for toggling flags which might for example, indicate whether a coat
{s worn or not, or whether a door is open or not.

By using this command, it is possible to reverse the status of the flag without needing to inspsct its
contents firet. Using thie command twice in succession wlll restore the contentse of the flag to its
original etatus (eithsr a zero or a one).

Example

NOT Flag [35]

Pause

Thie command simply pauses the game until the player presses any key.

This would be useful If for example, the player was to be prompted to insert a data disk before
loading/saving a saved game position.

Exampls
It Verb = [12] DO
{
Print Lower Message [127]
Pause ’
Save

Jump To Input
}

Print Lower Message [n]

This command prints the messags number n in the lower screen window normally used for the
player's input.

PRINT LOWER MESSAGE would normally print the msesage in upper case and in INVERSE (e
PAPER on PEN), with one sxtra space added to the start and end of the message. However thsse
features can be altered according to the user's taste. Ses ths chaptsr "Customising SAS" for more
detalls on this

It is intended that this command should be used for displaying "error” messages such as "You can't
go that way" etc.

Example
It Diraction Not Vealld DO
{
Print Lowar Massags [200]

Jump To Input
} .

77

Print Messsage [n]

This command printe the message number n in the upper screen window. Aftsr the last line of text
in the message has bsen printed, the upper window le scrolled an extra tims so as to leavs a blank

line before the next message to be printed, thue keeping the screen display nice and neat and avolding
clutter.

This command can therefore be thought of as printing a “"paragraph” of text onto the screen. If
“paragraphs” longer than 256 characters are required (the maximum length of a single message), then
ueing 8 PRINT MESSAGE SUPPBRESSED command before a PRINT MESSAGE command will
have the desired effect by chaining two messages togsther.

Example

Print Messags [BO]

Print Message Suppressed [n]

this command printe the message number n in the upper screen window in exactly the same way as
the PRINT MESSAGE command. However, the ecreen is NOT scrolled an extra time at ths last line
to be printed.

Thie command could be used to print large “paragraphe" of text when used with the PRINT
MESSAGE command which is used to print the end of the "paragraph”,

Thie command could ales be used to have an extra msssage line printed depending upon the value of a

flag, but still enabling the current "paragraph" of text to remain nice and neat. The example below
does this.

Example
Print Massags Supprnnd’ [75]
I¢ Flag [99] > [O] THEN

Print Massags Suppressed [76]
Scroll Screen

Put Movable Object [ni] At [n2]

This command enablas the movable object n1 to be placed at the location n2. If n2 equals zero, then
the movahle object is in effect destroyed.

This command will have no effect If the movable object n1 is currently bsing carried by the player.
Example

Put Movabie ObJact [30] At [65]

Put Unmovable Object [nl] At [n2]

This command enables the unmovable object n1 to be placed at the locatlon n2. If n2 equals zero,
then the unmovable object ie in effect dsstroyed.

Example

Put Unmovable Objsct [S] At [LNO]

78

Quit

This command is used to re-start a game from scratch. It does the following taske before jumping to
the first line of eource bank 1:

a)

b)

c)

d)

8)

All flags and system flage have thelr contents set to zero EXCEPT for system flag 3
(used to indicate whether RAMSAVE has been used) whose value is retained.

All movable object and unmovabls object locations are sst to zero,
All movable objects are marked as "not currently being carried" by the player.
The contents of each position in the ecore map are cleared.

The scresn is clearsd

It will therefore become apparent that the commands in eource bank 1 must bs used to set the intitial

locatione of any objects (movable or unmovabie), ths initial location, and set values of any flags which
are required hold non-zero values at the start of the game,

Ramload

This command enables a saved game flle to be locaded from RAM (computer memory) enabling the
playsr to resume play at the point where the player's game position was prsviously RAMSAVEd.

BAMLOAD will only be executed If system flag 3 contalns the value of one (indicating that
BRAMSAVE has been previcusly used.. The ueer can make use of this feature to display an
appropriate error message if nescessary. The example below does this,

It is usually a good Idea to follow this command with a DESCRIBE command (to describe the "new"
location} and a JUMP TO INPUT command.

Example

It Verb = [19] DO

{

Remark ses Print "srror" meassage !f no RAMSAVED fllg sas

It System Flag [3] <> [1] DO

{

Print Lowaer Massage [23]
Jump To input

}

Ramload
Describe

Jump To input

}

79

Ramsave

Thie command enablee the player to etors in BAM (computer memory) detalls of the current game

poeition, eo allowing the player to resume playing from the same point later on if thinge should go
disasterously wrong|

Becauee the game position data i{s saved in RAM rather than diek or casestts, thie data will be lost as
soon as the computer s turned offl

As RAMSAVYE ls used, the contents of system flag 3 s set to the value of onsg, Indicating that there
is now a RAMSAVEJ file in memory.

Exampls

If Verb = [18] DO
{

Aamsave
Jump To Input
}

Remark st$

This command is simply used to comment a section of the source lieting, so alding the user to follow
his own program logic.

REMARK has no effect whateoever upon the complled adventure except for lncreaalﬁg its overall
length by three bytes for every REMARK used.

st® may be a string of any printable characters.
Example

Remark ==« Any text you llke HERE llllll wwe

Return

This command s used to rsturn from subroutines in a similar way to normal SAM BASIC.

Actual subroutines are always begun with a line label and terminated by a RETURN command. Any
number of source commands may reside between the start and end of a subroutine. Subroutines may be
nested up to a maximum of 255 levsls.

Oncs a RETURN command is encountered, control is passed back to the command following the one
which originally called the subroutine.

The user must ensure that the program logic bypasses any subroutines located within a bank, as a
RETURN command encountered without a previous GOSUB will cause the interpreter to display an
8ITOr message.

Example
SUBR.1:

Print Messaga [FLG{1}]
Raturn

80

Save

This command enablee the user to save a game position to caesette or disk (according to SAM BASIC's

DEVICE status), enabling the player to resume play later at the point in the game where the poeition
wase eaved, by ueing the LOAD command.

Example

If Verb = [14] DO
{

Save
Jump To Input
}

Score

This command {s used to display the player's current score (the value which is held in eystem flag 2)

System flag 12 should hold the number of a message which contains text along the lines of "Your
current score 18" or "You have completed” which will be printed directly before the score {a number in
the range O to 100). If system flag 12 contains a value of zero, then no such message will be printed.

System flag 13 should hold the number of a message which contains text along the linee of "/100" or
"Z of this adventure” which will be printed directly after the player's score. Agaln, If system flag 13
contains a value of zero, then no such message will be printed,

You should remember that since system flags can only contain values in the range 0 to 255, the
meseeages that syetem flags 12 and 13 refer to, muet be meseages with numbers less than 256l

Ideally, system flags 12 and 13 should be set with appropriate values In source bank 1, which s
exscuted before the game actually begins, but you can constantly re-define the values hsid in these
system flags from within the rest of the adventure source throughout the game if you wish,

Example

If Verb = [17] DO
{

Score
Jump To Input
}

Scroll Screen

This command {s used to scroll the upper text window up by one text lins.

SCROLL SCBEEN can be used along with the PRINT MESSAGE SUPPRESSED command in
order to leave a blank line before the next message to be printed.

Example

Print Message Suppressed [B]
If Flag [45] > [O] THEN

Print Messags Supprassad
Scroll Screen

B1

Set Direction To [n]

Thie command is ueed to “fool" the interpreter into thinking that the player had typed the name of
direction number n in hie last input.

This command also directiy alters the value that will be returned by the numeric function DNO.,

Example

Sst Dirsction To [5].

Set Flag [nl] To [nZ]

This command le ueed to set the contente of flag n1 to hold the value of the numerical exprsseion n2.

Example

Set Flag {75] To [FLG(20)+10]

Set Location To [n]

This command is used to directly alter the the current location to location number n. Unlike the ACT
UPON DIRECTION and MOVE TO commands, a jump ie NOT made to the first source line of
source bank 4.

It s ESSENTIAL that this command is used in source bank 1 to define the initial location number for
the location that the player starts out from at the beginning of the game.

This command also directly alters the value that will be returned by the numeric function LNO.
Example

Sat Location To [1)

Set Message Zero To [s$]

This command is used to build up the string expression 8@ intoc message number zero. Message zero

can then be printed in the normal way by using the PRINT MESSAGE, PRINT LOWER
MESSAGE or PRINT MESSAGE SUPPRESSED commands.

The total length of message zero may not exceed 1024 characters (the interpreter will display an error
message If an attempt Is made to exceed this length).

Messags zero may be constantly re-defined throughout the adventure source within any bank.
Example

Set Messags Zero To [MSE{61)+SPC(1)+V$(VNO+1)+MSG(62)}]
Print Message [O]

82

Set Movable Object To [n]

Thie command e used to “fool" the interpreter into thinking that the playser had typed the name of
movable object number n In his last input.

Thie command aleo directly alters the value that will be returned by the numeric function MNO.

Example

Set Movable Object To [S]

Set Preposition To [n]

This command is used to "fool” the interpreter into thinking that the player had typed the tsxt of
preposition number n in his last input.

This command also directly alters the value that will be returned by the numeric function PNO.
Exampls

Set Praposition To [1]

Set Scroll Counfer To [n]

This command is used to directly alter the scroll counter. When using this command, the screen can
be scrolled (by using the SCROLL SCBEEN, PRINT MESSAGE or PRINT MESSAGFE
SUPPRESSED commands] n-1 times before the "More 4" message s displayed, and the interpreter
walts for a key-press before continuing to scroll the upper text window.

This would be useful if for example, the user wished to display a graphic picture of an objéct which
was EXAMINEd, yet wished to let the player read any text which remained upon the screen first. The
example below could be used to immediately print a "More 4" message before displaying euch a graphic.

Example
Set Scroll Counter To [1]

Scroll Scraen
Show Graphic [1]

Set System Flag [nl] To [n2]

This command is used to set the contents of syetem flag n1 to hold the value of the numerical
sxpreseion n2.

The interpreter will display an error message If n2 has a value of zero or is greater than 30,

Example

set System Flag [3] To [1]

83

Set Unmovable Object To [n]

This command e ueed to "fool" the interpreter into thinking that the player had typed the name of
unmovable object n in his last input,

This command also directly aitere the value that will be returned by the numeric function UNO.

Example

Set Unmovable Object To [B]

Set Verb To [n]

This command {8 used to "fool" the interpreter into thinking that the player had typed the name of
verb n in hie last input.

This command also directly alters the value that will be returned by the numeric function VNO,

As an example of how this command could be used, consider the input " Get Into tha taxI", wherse "Gat"
ie defined as a verb in the vocabulary, "Inte” a preposition and “taxl" is an unmovable object, In most
adventures, "get" would be defined as a synonym of the verb "take". So initially, as far ae the
Interpreter is concerned, the player wants to pick up the taxil By detecting ths verb number for "get”
and the synonym number for "Into", we can transform the verb number into the one for the verb

"gnter” which is obviouely what the player really meant. The example below ehows how this could be
done. -

Example

If Varb = [4] AND

If Praeposition = [2] DO
{
Saet Verb To [10]
Sat Praposition To [O]
}

Show Graphic [n]

This command is used to display location graphics. n is the picture number to display, and refers to
the nth picture to be added to the compiled adventure by using the graphics extension program on the
compiler disk. If no graphics have yet been added to the compiled adventure, then no action is taken.

SHOW GRAPHIC will automatically scroll the upper text window, clearing any text before showing
the picture.

Although this command would mostly be used in source bank 4 to display location graphice as the
location le entered, it is perfectly possible to use this command in other source banks, For exampls, in
source bank 2, the user could use this command tc display a picture of a map in response to it being

examined or read.

Example

If At Locatlon [54] THEN
Show Graphle [11]

84

} - Structure End

Thie {e ueed to mark the end of a structure. Structures may be neeted up to a maximum of 255
levels,

Example
For / Next : Start [120] : End [130] : Step [1]

{
Print Measags [CNT]

}
{ - Structure Start

Thie {e ueed to mark the start of a structurs which can contain any number of commands. Structures
may be nested up to a maximum of 235 levesls.

The FOR / NEXT command and all IF.. commands with a DO action, require to be followed
immediately by a structure.

Example
I¢ Not Carrled [10] DO

{
Print Message [210]

}
Swop Movable Objects [ni] And [n2]

This command reverses the current locations of movable objects n1 and n2. This applies whether the
objects ars being carried or not.

A poseible usse of this command could be to "swop” objects such as a "lit match” and an "unlit" one,
when in reality, both movable objects have been separately defined. You could even have one movabls
object magically transformed Intc a different one in the gamsl

Example

If Verb = [3] ARND
If Movabla ObJact = [23] THEN
Swop Movable Objacts [23] And [24]

Take Movable Object [n]

This command enables the player to pick up movable object numbsr n. This command does not check

whether movable object n is actually in the current location first, so the user will probably have to
detect this himself,

Once “taken”, the movable object is removed from the current location (if it was there at alll) and the
contents of eystem flag 1 (used to hold the number of objects currently carried by the player) is

increased by one.
No action le taken if Movable object n is already being carried by the player.

Exampile

It Movable Object Present [MNO] THEN
Take Movable Objact [MNO]

85

SYSTEM FLAGS

This appendix givee details on the eystem flags ueed by the interpreter. Where names are given to

the flage, the names are purely for reference and do not refer to any numeric function names which
can be accesesd by the editor.

The contents of system flags can be directly altered by ueing the SET SYSTEM FLAG command,
and their contents read by using the SFLG(n) numerical function. n represents the flag number to
be read and must be a valld numerical expression In the range 1 to 30,

System Flag 1 name : "NO.CARRBRIED"

Thie flag ie used to hold the number of maovable objects which are currently being carried by the
player. The contents of thie fiag are increased by one when a TAKE MOVABLE OBJECT ls
executed, and decreaesed by one when a DROP MOVABLE OBJECT command is executed.

By checking the contents of this flag before allowing the player to pick up a movable object, the user
can impose a limit on the number of movable objects that the player is allowed to carry at any one
time. The example below imposes a limit of four objects carried.

Example

It System Flag [1] > [3] DO
{
Print Lowsr Messags [19]
Jump To Input

}
Taks Movable Object [MNO]

In the example shown, message 19 would contain text along the lines of "Sorry, you cannot carry any
mors”

System Flag 2 name : "SCORE"

This flag is used to hold the player's current score (normally a number in the range 0 to 100). The

contents of this flag are read by the SCORE command and increased by the INCREASE SCORE
command.

System Flag 3 name : "BAMSAVE.FLG"

This flag contains the value of one if a game position has bsen stored in RAM {computer memory) by
using the BAMSAYE command, otherwise it will contain a value of zero,

The user can inspect this flag in order to display an “error” message if the player tries to uee
BRAMLOAD without using RAMSAVE first.

This is the only system flag whoes contents are not reeet to zero by the QUIT command.

Example

If System Flag [3] = [O] DO
{
Print Lowear Messegs [23]
Jump To Input
}

Ramload

86

Systam Flag 4 name : "LOCATION"

This flag is used to hold the location number of the current location. The contents of this flag are
read by the numeric function LNO.

Systam Flag S name: "OLD.LOCATION"

This flag is used to hold the location number of the location you have just “left" when using the
MOVE TO or ACT UPON DIRECTION commands. Some users might find this useful.

System Flag 6 name: "DESC.E.FLG"

If the contents of this flag ars set to a non-zero value, then the DBESCRIBE and DESCRIBE
LOCATION commands will NOT list any avallable exits (some users might prefer to list available
axits in the actual location descriptions instead).

Altering the contents of this flag does not affect the LIST EXITS command.

System Flag 7 name:"DESC.O0.FLG"

If the contents of this flag are est to a non-zero value, then the DESCRIBE and DESCRIBE
LOCATION commands will NOT list any movable objects which are pressnt in the relevant location.

Altering the contents of this flag does not affect the LIST MOVABLE OBJECTS PRESENT
command.

System Flag 8 name: "PREFIX.FLG"

If the contents of this flag are set to a non-zero value, then any movable objects listed by the
DESCRIBE, DESCRIBE LOCATION, INVENTORY and LIST MOVABLE OBJECTS
PRESENT commands will NOT have their prefixes (“the", "some" etc.) printed {if they have one).

Note that this flag does NOT supprees the movable object prefix when the string function M@&(n) is
used. System flag 17 can be used for thls purpose if desirsd.

System Flag 9 name: "INV.TYPE"

This system flag controls the way that movable objects ars displayed on the screen by the
DESCRIBE, DESCRIBE LOCATION, INVENTORY and LIST MOVABLE OBJECTS
PRESENT commands.

If the flag contains a value of zero, then sach movable object will be printed on a new lins. For
example

An orange

Soms stonas
The computsr

If however, system flag 9 contains a non-zero value, then the same objects would be displayed as

An orange, some stonss and the computer.

87

System Flag 10 name : "INV.MSG"

This flag is used by the INVENTORY command. The user should set thie flag to contain the number
of a message which should contain text along the lines of "You are currently carrylng :" which is
printed before the actual list of movable objects currently carried by the player. If the flag holds the
value of zsro, then no such message will be printed.

Tha message that this flag refers to must have a message number in the range 1 to 255.

System Flag 11 name : "INV.NOMSG"

This flag is used by the INVENTORY command. The user should set this flag to contain the number
of a message which should contain text along the lines of "Nothing at alll" which is printed in the case
of the playsr typing INVENTORY when he s not actually carrylng anything. If the flag holds a value
of zero, then no such message will be printed (although this will probably look sloppy).

The message that this flag refers to must have a message number in the range 1 to 255.

System Flag 12 name : "SCORE.MSG"

This flag is ueed by the SCORE command. The user should set this flag to contain the number of a
message which should contain text along the lines of “Your current scors Is" which is printed directly

before the player's actual score (a number in the range 0 to 100). If the flag contains the value of zero,
then no such meseage will be printed.

The message that this flag refers to must have a message number in the range 1 to 255,

System Flag 13 nams 1 "SCORE.MSG2"

This flag is used by the SCORE command. The user should set this flag toc contain the number of a
message which should contain text along the lines of " out of 100" or "X so far" which is printed

directly after the player's actual scors (a number in the range 0 to 100). If this flag contains a valus
of zero, then no such message will be printed. :

The message that this flag refers to must have a message number in the range 1 to 255.

System Flag 14 name: "EXITS.MSG"

This flag is used by the DESCRIBE, DESCRIBE LOCATION and LIST EXITS commands. The
user should set this flag to contain the number of a message which should contain text along the
lines of "Exlts from hera are :" which is printed before the list of avallable exite. If this flag contains a
value of zero, then no such message will be printed,

The message that this flag refers to must have a message number in the range 1 to 255.

System Flag 15 namse: "OBJ.PRES.MSG"

This flag is used by the DESCRIBE, DESCRIBE LOCATION and LIST MOVABLFE OBJECTS
PRESENT commands. The user should set this flag to contain the number of a message which
should contain text along the lines of "Objacts present here ars :" which is printed before the list of
movable objects present. If this flag contains a value of zero, then no such message will be printed.

The message that this flag refers to must have a message number in the range 1 to 255,

System Flag 16 name: "PIX.FLG"

If this flag contains a non-zero value, then the SHOW GRAPHIC command will not display any
pictures on the screen. Setting the contents of this flag to zero, enables SHOW GRAPHIC again.

The user can make use of this flag to enable the player to switch between a text-only adventurs, and
one with graphics.

Example

PIX.0N:
Set System Flag [18] To [O]
Jump To Input

PIX.OFF:

Set System Flag [16] Tao [1]
Jump To Input

System Flag 17 name : "M®&.FLG"

Thie flag can be used to suppress the prefix of the nams of the movable object returned by the string
function M&({n).

If the flag contalns a value of zero, then any movable object prefix (such as "the ", "an “"some " etc.)
will be included in the string returned by Ms(n).

If howsver, the flag contains a non-zero value, then the movable object prefix will be omitted from the
name of the movable object returned by the string function M&(n).

System Flag 18 name: "FIRST.VNO"

This flag contains the number of the FIRST verb mentioned in ths player’s last input (or section of
Input if the player has used multiple commands). This Is not necessarily the same value as will be
returned by the numeric functlon VNO which returns the number of the LAST verb mentioned in the
player's input (or section of input If multiple commands were used).

The user might find this flag useful when trylng to evaluate excaptionally complex inputs entered by
the player. As an sxampls of how this works, coneider the Input

TAKE DROP

which obviously contains two verbs, "take" and "drop". The numeric function VNO will return the

number of the LAST movable object mentioned in the Input (in this case "drop"), but system flag 18
will contain the number of the verb "taks".

If no verb at all was mentioned in the last player's input, then this flag will contain a valus of zero.

Systam Flag 19 name: "FIRST.DNO"

As syetem flag 18, but dealing with the first direction mentioned by the player.

System Flag 20 name: "FIRST.MNO"

As system flag 18, but dealing with the first movable object mentioned by the player.

89

Systam Flag 21 name : "FIRST.UNO"

As system flag 18, but dealing with the first unmovable object mentioned by the player.

System Flag 22 name: "FIRST.PNO"

As system Flag 18, but dealing with the first preposition mentioned by the player.

System Flag 23 name: "LAST.ERROR"

This flag will contain a value of one if an Interpreter error occured (for whatever reason) while the
Interpreter was trying to execute the previous source line. If the previous source line was exscuted
with no problems, then this flag will contain a value of zero.

By inspecting the contents of this flag, the user can take appropriate action if for example, a digk
error occured while the player was trying to load or save a game position to disk.

Example
Remark #«ss Take appropriate actlon If a disk error occurs whils using SAVE see

RETRY:
Pausae
Savas
If System Flag [23] = {1] DO
{
Print Lower Massage [123]
Goto RETRY

}
Jump To Input

System Flag 24 name: "ERROR.RPT.FLAG"

This flag can be used to suppress the printing of interpreter errors on screen. The errors still "cccur®
and the contents of system flag 23 is still set to onse, but the player is unaware that anything has
gone wrong, as no interprater error message has appeared.

It is therefore absolutely essential that the user only sets this system flag once he is certain that his
adventure has bsen vigourously play-tested and is free from errors.

By checking the contents of system flag 23 (see above), the user can still detect and take appropriate
action on errors over which he has no control such as disk loading/saving errors.

90

System Flag 25 name : "TOP.FREE"

This flag can be used toc reserve an area at the top of the upper taxt window which will not be

scrolled off of the screen by the SCROLL SCREEN, PRINT MESSAGE and PRINT MESSAGFE
SUPPRESSED commands. Some ussrs might want to keep the nama of the current location

permanently here, or keep location graphics permanently displayed while text continues to scroll
underneath as normal.

Howaever, it is important to remember that the SHOW GRAPHIC command will continue to
over-write the area reserved at the top of thas scresen as normal.

The maximum area that can be reserved is 10 text rows (each 8 pixels deep). The user should set this
flag to contain the number of text rows he wishes to reserve. If the flag contains a number outside
the range 1 to 10, then the interpreter will default to the normal upper window size of 17 text rows. It
Is a good idea to immediately alter the scroll counter after setting this flag.

Example

Remark : e«s Rezarve 3 rows at top of uppar window saee

Set Systam Flag [25] To {3]
Sat Scroll Counter To [17-SFLG(25)]

Remark s« Now put somsthing at the top of the screen seas

Executa BASIC Command : PRINT AT 0,0;" Program Tltls "

System Flags 26 - 30

These system flags are currently unused by the interpreter, but are ressrved for use by any future
versions of SAS.

91

COMPILER ERROR MESSAGES

This appendix lists all possible error messages which may be displayed by the source compiler when
compiling an adventure source created by the source edltor,

While compiling a source, the compiler automatically displays on-screen the title of the section of ths

source currently being processed. If an srror message should be displayed, it will be something in this
last section that has caused the trouble.

In all instances, once an error is reported, the compllation will cease immediately, and the "compiled"
adventure will be unplayable. The adventure source files being compiled will be unaffected. Wherever
possible, the compiler will detail the line or item number in the current source section which caussed
the fault, and in the case of vocabulary or ssurce bank errors, even display the offending line
on-screen as well,

The user {s recommended to make a note of the item in his source which caused the error, and return
to the editor immediatsly toc remedy the problem before attempting another compllation.

Bad Compllation In theory, this {8 one srror messags that you should NEVER seel It almost
certainly indicates either a corrupted source flls, or a programming "bug” in

the compliler program itselfl If this Is the case, you should contact me so that
I can Investigate the problem.

Disk Error A disk error occured when trying to load a source sectlon from your "source"
disk. Compilation was immedlatsly aborted.

Exit Structure Misplaced You have tried to use an EXIT STRUCTURE command outaiﬂe'a
structure. The use of this command is only permitted somewhere betwesn
the STRUCTURE START and STRUCTURE END commands.

Exprassion Too Complex You have tried to define a numeric or string sxpression which involved more
than 255 calculations or operations - You are most unlikely to generate this
srrori

Invalld Actlon An IF.. command was detected containing an invalid action, Only the

following actions are permitted : THEN, DO, GOTO, GOSUB, AND and OR.

Invalld Command In Sourcs A scurce line did not contain a valid command code. This error message
Line almost certainly indicates a corrupted source file on your "source" disk.

Invalld Comparison An IF.. command was detected containing an invalid comparison. Only the
following comparisons are permitted : < (is less than), > (Is greater than), = (is

equal to), <> (le not equal to), <= (is lsss than or equal to) or >= (is greater
than or equal to),

Invalld Entry In Exlts Tabls You have defined exit data in a location Incorrectly, Exits must be numbers

in the range 1 to 99, and locations led to must be numbers in the range 1 to
255.

Invalld Exprassion You have defined a numeric or string expression incorrectly. Possible causes
of this error could bs mis-gpsllings of function names or invalid arithmetic.

Invalld If.. Chaln You have defined an illegal chain of IF.. commands. An IF.. command with

sither an AND or OR action may only be chained with ancther IF..
command with the same action type.

92

Invalld Movabla Objact Prafix

invalld Yocabulary Line

Lina Label Already Exists

Line Label Not Defined

Line Label WIithin Structure

Locatlon Greater Than 255 In
Exlts Table

Message Greater Than 1024

Miasing Command Following
THEN

Missing Dirsction In Exits
Table

Missing Expression

Missing If.. Commend

You have defined the prefix for a movable object's nama incorrectly. Only

the following Prefixes are permitted : A, AN, THE, SOME or a space
(Indicating no prefix).

A vocabulary line did not contain a valld command code. This error

message almost certainly indicates a corrupted source file on your
"source” disk.

You have duplicated the name of a line label in the current source bank.
Only one line label per name is psrmitted.

You have tried to jump to a line label (by using the GOTO, GOSUB or
IF.. commands) which does not exist in the current source bank.

You have tried to position a line label within a structure, between the
STRUCTURE START and STRUCTURE END commands. Line
labels are only permittsd outside structures.

You have tried to define a location exit leading to a location with a

number greater than 255. Only locations with numbers in the range 1 to
255 are permitted.

You have tried to print a messags (using the PRINT MESSAGE,
PRINT MESSAGE SUPPRESSED or PRINT LOWER
MESSAGE commands), or trisd to access a messags (using the MSG{n)
string function) with a number grsater than 1024. Only messages with
numbers in the range 0 to 1024 are permitted.

An IF.. command containing a THEN action was not followed by another
command line, A valld command line must be placed immediately after an
IF.. command with a THEN action.

You have not defined a directlon number befors a corresponding location
number in a location exits table,

You have omitted a string or numeric sxpression in a source command
which required such an expression as one of its parametesrs.

You have omitted an IF.. command. IF.. commands with sither AND or

OBR actions require to be chained with another IF.. command following
immediately on the next lins.

93

Missing Location In Exlts
Table

Missing Structure Start

Mora Than 255 Entrles In
Word Type

More Than 255 Synonyms

No Fres Memory

Neo Leading BASIC Lins
Number Allowed

No Preceding Structurs
Start

Numbsr Greatar Than 258

Number Too Blg

Numeric Functlon Not
Allowed

String Functlon Not Allowed

You have not defined a locatlon number after a corresponding direction
number in a location exits table,

You have omitted a STRUCTURE START command. Both the FOR /
NEXT and IF.. commands with a DO actlon, require to be immediately
followed by a STRUCTURE START command on the next line.

You have defined more than 255 "nsw" words in a "class" In the vocabulary.

You have defined more than 255 synonyms for a single word in the
vocabulary.

There is no fres buffer space in RAM to continue compiling your adventure
source. You are unlikely to encounter this error message (and sven then,
only when compiling exceptionally large source flles), Try slightly reducing

the size of one of your source sections (the largest is probably best) before
attempting compilation again.

You have tried to Include a leading BASIC line numbser while using an

EXECUTE BASIC COMMAND command. Leading BASIC line numbers
are not permitted.

You have used a STRUCTURE END command without previously using
a STRUCTURE START command,

You have tried to include a number greater than 255 in a numeric
expression. Only numbers in the range 0 to 255 are allowed.

You have tried to Include a number consisting of more than 4 digits in a
numeric or string expression. Only numbers with up to 4 digits are allowed.

You have tried to use a numeric function in an expression. A string
function or expression should have been used instead.

You have tried to use a string function in an expression. A numeric
function or expression should havs besn used instead.

Structura Start In Wrong Placs

Structures Ars Unbalanced

Synonym Misplaced

Too Many Naested Structures

Zaro Not Allowaed In Exlts Table

You have mis-placed a STRUCTURE START command.
STRUCTURE START should be used directly after a FOR/NEXT
command, or an IF.. command with a DO actian.

There are an unsqual numbsr of STRUCTURE START and
STRUCTURE END commands in the source bank.

You have wrongly placed a synonym word In the vocabulary, Synoyms
may only be placed after a “naw" word, or another synonym.

You have nested too many structures. Structures may only be nested up
to a maximum of 255 levals,

You have used zero as elther a directlon number or locatlon number in a
location exits table. Direction numbers must be numbers in the range 1
to 99, and locatlon numbers, numbers in the range 1 to 255.

95

INTERPBETER ERROR MESSAGES

This appendix dstails all possible error messages which may be displayed by the interpreter while a
complled adventurs Is being played.

When an error is gensrated, the screen is cleared and an error message displayed along with the details
of the source line which caused the trouble. By pressing a key, the player can continue playing the
adventure. The interpreter will now jump to the next source line AFTER the one which gensrated the
error (this may or may not be what you intended when defining your source bank logic path).

In some cases, the error may have unforssen implications on the rest of the adventure, and it might be
better to rectify it before continuing with the play-testing of the game. On rare occasions, continuing

play after an error has besn generated may even result in the computer "crashing" or appearing to
"hang-up".

It is possible toc detect in the scurce whether an error has been generated, or even to suppress the
printing of error messages altogether (see the appendix on system flags for more detalls on this), but
this {8 not advisable until the adventure has besn as thoroughly play-tested as possible,

Calculation Result |s Greatesr A numerical expression resulted in a value greater than 255. This was
Than 255 not permitted for the command being executed at the time.
Calculatlon Result |s Zero A numerical exprassion resulted in a value of zerc. This was not

permitted for the command being exscuted at the time.

Caiculator Stack Empty An attempt was mads to unstack a non-existant value from SAS's
calculator stack. This may have been caused by a syntax error in a
numerical or string expression which was not detected by the compiler.

Calculator Steck Full There was not snough room avallable on SAS's calculator stack to
process the current numerical or string expression. Try making the
expression less complex. You are most unlikely to generate this error.

Diractlon Calculated To Be An attempt was mads to use or define a direction with a number which
Greatar Than 99 a numerical expression calculated to be greater than 99, This is not
allowed.

Dirsction Calculated To Bs Zero An attempt was made to use or define a direction with a number which
a numerical expression calculated ta be zero. This is not allowed.

Diraction Name Not Daflned An attempt was made to ugse the name of a direction whose name had
not been defined. The error could have been generated by using the

D®(n) string function, or by using the DESCRIBE, DESCRIBE
LOCATION or LIST EXITS commands,

Disk Error A disk error occured while trying to read or write data to the disk
drivs.
Error In BASIC Command An error occured while trying to use an EXECUTE BASIC

COMMAND command. This could indicate that there was a BASIC
syntax error in the BASIC command you were trying to execute,

96

Zxits Tabla Full

Flag Calculated To Ba Graater
Than 255

Filag Calculated To Ba Zerao

Gosub Stack Full

Graphic Doss Not Exlst

Invalld Calculator Op-Code

Locatlon Dascription Not
Defined

Location Doss Not Exist

Location Calculated To Ba
Greatsr Than 255

Location Calculatead To Ba Zero

Messaga Calculated To Be
Greater Than 1024

There was not enough room to insert a naew exit for the current location
by using the ADD DIRECTION command. Tha current location may
hold a maximum of 20 different exits at one time.

An attempt was made to use a flag with a number which a numerical
sxpression calculated to be greater than 25S. This is not allowed.

An attempt was made to use a flag or system flag with a number
which a numerical expression calculated to be zero. This is not allowed.

There {8 no room available in SAS's Gosub stack to perform a GOSUB
command. GOSUBs may only be nested up to a maximum of 255 levels.

An attempt was made to display a location graphic which was not
present in memory. (If no graphics had yet been added to the compiled
adventure by the graphics extension program, then the SHOW
GRAPHIC command would have been slmply ignored).

Something has gone seriously wrong while trying to process a numeric
or string expression. In theory, this is one error message which you
should NEVER seel It almost csrtainly indicates sither a corrupted
complled source file, or a programming "bug" in the Intsrpreter program

itselfl If this Is the case, you should contact me so that I can investigate
the problem. ’

An attempt was made to describe a location (using either the
DESCRIBE or DESCRIBE LOCATION commands) which did not
have any location description text defined for it.

An attempt was made to uss, define or jump to a location which did not
have a description or exits table defined for it

An attempt was made to use or define a locatlon with a number which

a numerical expression calculated to bas greater than 255. This Is not
allowed.

An aftampt was madse to use or define a location with a number which
a numsrical expression calculated to be zero. This {s not allowed.

An attempt was made to print or uss a message with a number which

a numerical expression calculated to be greater than 1024, This is not
allowsad.

97

Massages Not Oefinad

Massage Zero Full

Movabls Objact Name Not
Defined

Numbar Too Blg

BbJect Calculated To Bae
Greater Than 2S5

Object Calculated To Be
Zaro

Return Without Prasvious
Gosub

Score Map Position
Calculatad To Ba Greatar
Than 100

Scors Map Positlen
Calculated To Be Zero

Spaces Calculated To Bae
Mers Than 1024

Spaces Calculated To Be
Zero

An attempt was mada to print or uss a msssage which did naot exist.

There s not enough room for the definition of message zero as specified in

the SET MESSAGE ZERO command. The length of message zero may
not exceed 1024 characters,

An attempt was mads to use the name of a movable object whose name had
not been defined. The error could have been generated by using the Me&(n)
string function, or by using the INVENTORY, LIST MOVABLE

OBJECTS PRESENT, DESCRIBE or DESCRIBE LOCATION
commands.

An additlon in a numeric expression resulted In a number greater than
65535,

An attempt was made to use or define a movable or unmovable object with

a number which a numerical expression calculated to be greater than 255.
This is not allowed.

An attempt was made to use or define a movable or unmovable object with

a number which a numerical expression calculated ts be zero. This is not
allowed,

A RETURN commax;d was sncountered, without a GOSUB command
previously being used to call a subroutine.

The Numeric expression in an INCREASE SCORFE command calculated
the score map position to be greater than 100. This Is not allowed.

The numeric expression in an INCREASE SCORE command calculated
the score map position to be zero, This is not allowed.

The numeric expression within a SPC(n) string function was calculated to
be greater than 1024. This {s not allowed.

The numeric expression within a SPC(n) string function was calculated to
be zero. This is not allowed.

98

Subtractlon Rssult is Negativa

System Flag Calculated To Bs
Grestar Than 30,

Unmovable Object Namae Not
Dafinad

Varb Caiculatsd To Be Greatar
Than 255

Verb Calculated To Be Zaro

Verb Name Not Defined

A subtraction {n a numeric sxpression resulted in a number less than
zero,

An attempt was made to use a system flag with a number which a
numeric expression calculated to be greater than 30, This is not allowed.

An attempt was made to use the name of an unmovable object whose

name had not been defined. The error would have been generated by
using the U#(n) string function.

An attempt was mads to use or define a verb with a number which a

numerical expression calculated to be greater than 255. This Is not
allowed.

An Attempt was made to uss or define a verb with a number which a
numerical expression calculated to bas zsro.

An attempt was made to use the name of a verb whose name had not

been defined. This error would have been generated by using the V@(n)
string function.

93

"START" STARTER FILE SOURCE LISTING

This appendix glves a complets listing of the commands used in the "START" starter file to provide a
baslc adventure framework, from which complete adventures may be developed. Users might find this
listing handy as a reference source.

BANK 1

Remark : e#« START.BK]1 ewne
Remark : wee Sst up INVENTORY messages #we«

Sst System Flag [10] To [1]
Set System Flag [11] Te [2]

Ramark : ##« Set up SCORE massagss ws»

Set System Flag [12] To [3]
Set System Flag [13] To [4]

Remark : wse St up EXITS msessags for DESCRIBE ea=»

Set System Flag [14] To [5]

Remark 1 »#« Set up OBJECTS PRESENT messags for DESCRIBE ese
Sst System Fiag [15] To [6]

Remark : #s» Now deflna the Initial location and describs It ese

Set Locatlon To [1]
Describe

Jump To Input

- BANK 2

Remark : #»e¢ START.BK2Z eee
Ramark : =## Convert "lock at” Into "sxamins” sse

If Varb = [B] AND
if Prepositlon = [5] DO

{
Set Verb To [11]
Sat Preposition To [O]

}
Remark : ses If & dirsction was mentloned, then move | see
If Dirsctlon > [0} GOTO DIRS
Remark 1 ses Now Jump to the routines dealing with sach varb esee

If Verb = [1] GOTO SAVE

100

If Verb = [2] GOTO LOAD

If Varb = [3] GOTO RAMSAVE
If Verb = [4] GOTO RAMLOAD
If Verb = [5] GOTO QUIT

It Verb = {6] GOTO SCORE

If Varb = [7] GOTO INV

If Varb = [8] GOTO LOOK

Remark : se= For the remalning verbs, sither a movable or unmovabls
Remark : object MUST bs spsecifled { EXCEPT for EXAMINE) wee

If Yarb <> [11] AND

if Movable Object = [0] AND

if Unmovabla Object = [0] GOTO SORRY..
If Varb = [9] GOTO TAKE

Ramark : sse¢ For tha followlng verbs, movabls objects MUST be carrled
Remark : and unmovabla objects MUST ba prasssnt sse

it Movabla Objact > [O] AND
If Not Carrled [MNO] DO

{
Print Lower Massage [13]

Jump To input
}

If Unmoveble Object > [O] AND
If Unmovabla Object Not Present [UNO] GOTO NOT.HERE

If Verb = [10] GOTD DROP

If Verb = [11] GOTO EXAMINE

Goto SORAY..

RAemark : eee The program |umps hers If a directlon was mantioned s=s
DIRS:

Remark : ==s Print aan srror message If there is no axit for tha wss
Remark : s+« mantloned direction ss=

if Diractlon Not Vaild DO

{
Print Lowar Massage [11]
Jump To Input

}
Remark : see Tha direction was vslld, sc move to the new location see
Act Upon Directlon

Remark : «se SAVE command routine ess

101

SAVE:
Print Lowar Massage [7]
Pausa
Save
Jump To Input

Remark 1 sse LOAD command routina ses

LOAD:
Print Lowar Msssags [7]
Pauss
Load
Dascrlbe
Jump To Input

Remark : «s» RAMSAVE command routing wes

RAMSAVE:
Ramsava
Jump To Input

Ramark : ««« RAMLOAD command routine sse

RAMLDAD:
it System Flag {3] = [0O] DO

{
Print Lowar Massags [B]

Jump To Input
}

Ramload
Describs
Jump To Input

Remark : «=« QUIT command routing s«e

quiT:
Scors
Print Msssaga [3]
Pauss
Quit

Ramark : ses SCORE command routing sss

SCORE:
Scorae
Jump To Input

Remark : ss« [NVENTORY command routing ese

INV:
Invantory
Jump To Input

Remark : «»e LOOK command routing s=«
LODK;

Dascriba
Jump To Input

102

Reamark : ess TAKE command rautine «se

TAKE:
Remark : sse Tha movablie objact MUST be present wes
If Movable Object = [0} GOTO SORRY..
if Movabls Objsct Not Present [MNO] GOTO NOT.HERE
Ramark : sss Now plck up the objact »=w

Take Movabie Objact [MNO]
Gosub 0K
Jump To End

Remark : »«« DROP command routine w»s

DROP:
Drop Movable Object [MNO]
Gosub OK
Jump To End

Remark : ses EXAMINE command routina swes

EXAMINE:

Ramark : sss [nmart any responses to obJects examined hers, followed
Remark : by a JUMP TO END command esa

Remark : ses Massags 15 wlll be printed as a default =se

Print Massage [15]
Jump To End

Remark : ss» The program wlil Jump harse if an Input is not understood
Remark : for some reason sss

SOARY..
Print Lowsr Msssage [10]
Jump To Input

Remark : s« The program wlli Jump hers whan an object is not sse
Remark : ses pregant sse

NOT.HERE:
Print Lower Massags [12]
Jump To input

Remark : see Subroutina to print an "OK" message wes

0K:
Print Messags [14]
Raturn

Remark : s=s Routlne to print "You cannot do that" maessags sse

CAN'T:
Print Lower Masaage [16]
Jump To Input

10

BANK 3

Reamark : sss START.BK3 ssa
Remark : se« Insert any low prilority conditions here «ee

Remark : ses Now daeal with any remaining multipia commands ses

Continua With Input
BANK 4

Remark 1 ses START.BK4 ess

Remark : wee Describa the naw locatlon as wae anter it s»e
Describe

Remark : #==s |nsart any local conditions hare ses

Remark : #se Now Jump to bank 3 wswe

Jump To End

104

SAS SPECIFICATIONS

System requirements

SAS requires S12k internal BAM, BOM version 2.1 or later and at least one disk drive fitted. If present,

SAS will recognise and use an extra disk drive, the SAM mouse and a IMb external memory interface
{requires MASTERDOS).

Compiled adventures may be run on elther a 512k SAM, or a 256k machine if the adventure is small
enough.

Up to 727040 bytes are avallable for adventure "source” (734624 bytes if a IMb extsrnal memory
Interface is used)

Source cods banks

Four source banks are available. Each bank has a specific purpose, Bank 1 is used for game
initialisation, Bank 2 for Input svaluation, Bank 3 for low-priority conditions, and Bank 4 for local
conditions, Each source bank may hold up to 4096 command lines, Each command line uses 64 bytes of
source space (Irrespective of line length].

Each source bank may hold up to 4095 linse labels,

Vocabulary

Words consist of flve different "classes"; Directlons, Yerbs, Movable Objects, Unmovable Objects and

Prepositions. Each class of word may have up to 255 different entries, each with up to 255 diffsrent
synonyms.

The vocabulary ma)" have up to 2048 entry lines, with epace for up to 2042 words, Each vocabulary
entry line will use up 16 bytes of source space. Each word may be up to 15 characters long.

The user can define the number of characters in each word of the player's input that will be compared
to each vocabulary entry.

Mossages

Up to 1024 messages are avallablse. Each message may be up to 256 characters in length. Each message
defined will use up 256 bytes of source space, :

In addition, thers is a special message (message 0) which can be constantly re-defined throughout the
adventure. Message 0 may be up to 1024 characters long.

Locations

Up to 255 locations may be used. Each location may have a description up to 256 characters long, and
have up to 10 exits defined for it. Each location may actually hold up to 20 sxits at one time, the extra
exits being added by the ADD DIRECTION command.

Each defined location will use up 306 bytes of source epace.

Movable Objects

Up to 255 movable objecte may be defined. Each moveble object may have a name up to 15 characters
long. In addition, the movable object name may also have a prefix. There are four prefixes available -
"a ", "the ", "some * and "an ", Each movable object defined uses up 16 bytes of source space.

105

Unmovable Objscts

Up to 255 unmovable object names may be defined. Each unmovabla object may have a name up to 16
characters long. Each unmaovable object defined uses up 16 bytes of source space,

Veaerhs

Up to 255 verb names may be defined. Each verb may have a nams up to 16 characters long. Each
verb defined uses up 16 bytes of source space.

Directions

Up to 99 directions may be defined. Each direction may have a name up to 16 characters long. Each
direction defined uses up 16 bytes of source space.

Flags

255 flags ars available for use by the user. Each flag may contaln a value in the range 0 to 255, In
addition, thers are 30 system flags used by the interprater,

Graphics

Location graphics are added to the compiled adventure using the graphics extension program. Graphics
are converted from FLASH screens or normal SCREEN® files in either MODE 3 or MODE 4 and are
automatically compressed.

The number of graphics which can be added will vary according to the amount of free memory
available and how well the graphics comprass, hut the interpreter will support a maximum of 255,

10

ACT UPON DIRECTION
Actions (IF.. Commands)
ADD DIRECTION
Addition
AND (IF.. Commanads)
Bar Menus
BASIC Subroutines
BLANK LINE
Chains (IF.. Commands)
Character Fonts
Colours
CNT Function
Comparisons (IF.. Commands)
Compiler
Compiling Your Adventurs
CONTINUE WITH INPUT
Controls

Editor

Mouse
Creating An Adventure
D8(n) Function
Demonstration Adventurs
DECREMENT FLAG
DESCRIBE
DESCRIBE LOCATION
Directions
DROP MOVABLE OBJECT
DNO Function
DO (IF.. Commands)
Editor
Error Trapping
Errors

Complilsr

Interpreter
EXECUTE BASIC COMMAND
EXIT STRUCTURE
Exit Table
Expressions

Numsric

String
Flags
FLG(n) Function
FOR/NEXT
Forsign Characters
Glossary Of Source Commands
GOSUB
GOSUB (BASIC Command)
GOSUB (IF.. Commands)
GOTO
GOTO [BASIC Command)
GOTO (IF.. Commands)
High Priority Conditions
IF.. Commands
IF AT LOCATION
IF CARRIED

INDEX

24,36,40,63,69
26~28,62
63,105
25,60-61

27,62

7

54-55,66
33,63

27,62

57-58

55-56

29,60

26,53,62
2,43-44,92-95
43-44,92-95
40,56,64

42

7

9-41

50,61

4,46-47

30,65
35,36,40,41,46,49,52,65,87,88
65,87,88
5.8,10-12,18,106
66

60

26-27,62
2|7'42
48,90,96-99

44,92-95

48,96-99
54'55|55166

66
11-12,24,36,40,63,69

25,60-61
50-51,61
238-31,50-51,60,65,69,73,77,79,82,106
30,51,60

29,67

56-57

60-85

28,67

54

28,62,67
27-28,68

54

2B8,62,68
B,24,36-39,105
26-28,62,68-72
40,46,68

68

10

IF CHANCE

IF DIRECTION

IF DIRECTION NOT VALID

IF FLAG

IF LOCATION

IF MOVABLE OBJECT

IF MOVABLE OBJECT NOT PRESENT
IF MOVABLE OBJECT PRESENT
IF NOT CARRIED

IF PREPOSITION

IF SYSTEM FLAG

IF UNMOVABLE OBJECT

IF UNMOVABLE OBJECT NOT PRESENT

IF UNMOVABLE OBJECT PRESENT
IF VERB

INCBEASE SCORE
INCREMENT FLAG
Initialisation
INVENTORY

JUMP TO END
JUMP TO INPUT
Lins Labsls

LIST EXITS

LIST MOVABLE OBJECTS PRESENT
LNO Function

LOAD

Loading Adventurs Source
Loading Machine Code
Loading Character Fonts
Local Conditions

Location Descriptions
Locations

Low Priority Conditions
M®&(n) Function

Machine Code Subroutines
Main Menu

MASTERBASIC
MASTERDOS

Message Zero

Messages

Memory

MNO function

MOVE TO

Movabla Objects

MSG(n) Function

Nested Loops

Nested Structurss

Nestsd Subroutines

NOT FLAG

OR (IF.. Commands)
Parameters

PARK Adventure

PAUSE

Planning Your Adventure
Playtesting

PNO Function
Prepositions

PRINT LOWER MESSAGE
PRINT MESSAGE
PRINT MESSAGE SUPPRESSED
Procedures (SAM BASIC)

68

69

69

30,68

63

27,70

70

70

38,70

26,71
31,71,79.86
27,37,71

72

72

27,38,72

73,86

30,73
8,24,31-36,105
36,74,87
24,37,38,39,74
24,36,40,56,64,75
25,26,28,38,67,75,105
36,75,87,88
36,76,87,88
41,60

76

7.9

66

57-58 -
8,24,35-40,105
5,8,9,11-12,49
5,6,8,3,10-12,41,65,68,75,76,87,105
8,24,39-40,74,105
50,61,83

55,66

7-8

54,66
3,54,66,105
50-51,61,82,105
8,13-15,49-51,61,105
7,52-53,105
60,85
24,40-41,76
5,8,10,16,41,105
50,51,61

29,67

27,85

28,67

ag,77

27,62
25,50,60-62
9-44

40,77

5-6,9-10

48,50

60,50

18

38,49,58,77
25,26,30,37,49,78
49,78

54,55

10

PUT MOVABLE OBJECT
PUT UNMOVABLE OBJECT
QuUIT
RAMLOAD
BAMSAVE
REMARK
Sourca Command
Yocabulary
BETURN .
RND(n) Function
SAVE
Saving Adventure Source
SCORE
SCROLL SCREEN
SET DIRECTION
SET FLAG
SET LOCATION
SET MESSAGE ZERO
SET MOVABLE OBJECT
SET PREPOSITION
SET SCROLL COUNTER
SET SYSTEM FLAG
SET UNMOVABLE OBJECT
SET VERB
SFLG(n) Function
SHOW GRAPHIC
Source Banks
SPC(n) Function
Spelling
“START" Starter Flls
STR@&(n) Function
STRUCTURE END (})
STRUCTURE START ({)
Structures
SWOP MOVABLE OBJECTS
System Flags
TAKE MOVABLE OBJECT
U@{n) Function
User Defined Graphics
Unmovable Objects
UNO Function
Yerbs
V#(n) Function
¥YNO Function
Vocabulary

33,37,78
32,33,34,41,78
24,40,79
79,86

80,86

33,34,35,40,52,80
21

28,80

60

81,30

23,41

81,86

78,81

82

30,36,82
35,36,82
50,51,52,82

83

83

83,91
31,36,83,86

B84

B84

31,60,86
46,84,89
8,23-24,31-41,105
50,61

48
7,9-10,100-104
50,61

27,85

27,85

27,28

85
31,36,86-91,106
85,86

50,52,61

56-57
5,8,10,17,106
60,50
5,8,9,17,106
50,52,61

60,83
5,8,18-22,105

ALSO AVAILABLE FROM AXXENT SOFTWARE,

SHERIFF
GUNN

SHERIFF GUNN lis the first SAM adventure yet to make FULL use of the SAM Coupe's graphics,

using 16 colour MODE 4 graphics, and 64 column MODE 3 text to provids the perfect display for your
exploration of the rostin'-tootin' world of Sheriff Gunn.

The game is a two part adventure which sees YOU taking the part of the sheriff in his attempts to
catch the infamous outlaw Poiscnous Pete (he's hiding somewhere in them thar' hills). On your way
through over 80 locations, you will meet many other inhabitants of the town going about their
business, but will they help or hinder your progress ? There are lots of tricks and puzzles to solve
before you finally get your chance to bring in Pete, DEAD or ALIVE,

SHERIFF GUNN was not written using SAS, but nethertheless featurss an advanced parser
capable of accepting multiple inputs using AND as well as RUN TO, FIND, GET ALL, DROP ALL,
RAMSAVE and BAMLOAD, PALETTE, FONT SELECTION, SAY TO and much much morel

SHERIFF GUNN s avalilable for only 9.99 (please make POa/chgqnes payable to C, Jordan) from
COLIN JORDAN, 89 TREWENT PARK, FRESHWATER EAST, PEMBROKE, DYFED, SA71 SLP,

SAS registered users (see form on next page) may claim a special discount of 1.00 on the above price.

If you're interssted In playing or writing adventures an the SAM, then why not get in touch with the
SAM COUPE ADVENTURE CLUB. The club prouduces a bi-monthly club disk magazine which includes all

the latest news in the SAM adventure world, Including hints and tips on how to get the most out of
SAS.

You can obtain a copy of the latest lssue free of chargs | [or Your copy and more details
In return for a blank formatted diek and an S.S.A.E. contact

Phll Glavar
S.C.A.C.

43 Faerndala Road
Hail Green
Blrmingham

West Midlands
B28 SAlU

110

