\S

/f

(LERM SAM ASSEMBLER.]

ASSEMBLER + DISASSEMBLER + SINGLESTEP

12.
14,
16.

18.

19.

23.

CONTENTS

INTRODUCTION, GUARANTEES
AND FAULTY TAPES.

MANUAL FOR ASSEMBLER.
HELP PAGE/SCRATCH PAD.
MANUAL FOR DISASSEMBLER.
MANUAL FOR SINGLESTEP.

CUSTOMISING THE BASIC,
INCLUDING 512K EXTRAS.

APPENDIX.

OTHER LERM PRODUCTS.

SAMASS3.1 - COPYRIGHT LERM 1990

B

\

VER 3.a 256k VER 3.b 512k,
”n'u’u " !WESBEHBLER + SINGLESTEP)
ANTRODYCTION

The HAM ABUENBLEN has bhesn written to be easy to use and learn.
Any users with our Hpsotrum 280 Toolkit will be able to load
files from that assembler Into BAM ASOEMBLER. One PAGE of RAM
memory is 92k bytes long, The ANNEMBLER has two PAGES of RAM
available for source files in the 286k version and 8 PAGES in
the 512k version plus one page of WAM avallable for the machine
code that the Assembler oreates - valled ONECT CODE.

S0 the SOURCE FILE is the text that you type into the ASSEMBLER,
and the ORJECT CODE is the wmachine c¢ode that the ASSEMBLER
creates having “read" the souree file, Inoldentally, we shall
use SA as short for OAM ASNEMBLER,

This means that you oan have up to 64k or 256k of source file in
memory at once depending upon whether you have the 256k or 512k
version., Obviously you can put elther version into the 512k SAM,
but only the 256k version into the 256k SAM. The source files
are treated as separate files so if using two files to assemble
one object code file then the files have to be joined together
using EQU statements (see later). A novel feature is the HELP
PAGE which also doubles as a SCRATCH PAD (this is an area that
you can write notes into just like a scrap of paper). You can
use the HELP PAGE as a calculator to convert numbers from
hexadecimal to binary or decimal in any order. Also included in
the program is a NUMERIC DUMP and an ASCII DUMP. A feature of
this program allows you to convert old 32 column listings to the
64 column used here. Labels can be any length up to 14 bytes and
can include the underline character. There is 15k allowed for
labels created by your SOURCE FILES, so that you can have as
many as 976 labels. (In practice with a full source file of 32k
you could have a label every 3 lines). We hope you enjoy using
the SAM ASSEMBLER - we believe that it is a first rate product.

GUARANTEE AND FAULTY TAPES/DISKS.

If the tape/disk we supply you with turns out to be faulty then
please return it to us for replacement. Please mark your
envelope as FAULTY, and return the TAPE/DISK only. If you are
not satisfied with the product then please return it, and the
manual to us STRAIGHT AWAY, and mark your envelope REFUND (mail
order DIRECT FROM US ONLY). The product must be in good
condition. An SAE does speed up the process.

CONTENTS OF YOUR LERM TAPE/DISK
The 3 files are the 256k version, and the last 3 are for the
512k version. The order of the files is as follows:

auto ass3a - BASIC for 256k
SIDE 1 IF maincode3a - machine code for Assembler
ON TAPE. stepcode3a - Single step code

auto ass3b ~ BASIC for the 512k version.
SIDE 2 IF maincode3b - machine code for 512k assembler

ON TAPE. stepcode3b - Single step code for 512k

_1...

MAKING A BACKUP TO DISK

First prepare a blank disk using your SAM System disk and make
sure that you reply Yes when asked if you want the SAMDOS saved
as well. SAMDOS should be the first file on the disk. Now type
DEVICE T, insert your LERM tape into your tape recorder, press
function key F7 and play on your recorder. Once the program has
loaded you will be presented with a menu of options. Press Q +to
take you back into SAM basic. Now with your prepared disk in
drive one, press function key FO. This will save the 256k SAM
assembler and single step to your disk. Your LERM tape should be
put away somewhere safe now as this is your master and should be
looked after. If you have a 512k SAM, then repeat the above with
a fresh disk, but only load in the last 3 files.

MAKING A BACKUP TO TAPE
Switch on your SAM, rewind your LERM tape, and press PLAY on
your recorder and the F7 key on your SAM. Having . loaded in,
press Q to return to SAM BASIC. To make a copy to TAPE simply
start recording and press the F1 key. Again, for the 512k
version, repeat the above, but load in the last 3 files.

MEMORY ALLOCATION

You SHOULD NOT attempt to assemble any code below 32768 as the
Assembler uses this memory as its own. Should you require your
code to run from an address below 32768 then use the following
instructions: ORG 16384 : PUT 32768. This tells the assembler to
assemble the code to run from 16384 but to PUT the code it
creates into another position, in this case into address 32768.
After assembly you would save the code from 32768 and then
re-load it to 16384 to test it. (previous versions of SA wused
DISP rather than PUT but old s.files will automatically be
changed to PUT).

When the program is loaded the main assembler code loads to
address 65536 and is switched into address zero by a few bytes
of machine code at address 65527. These few bytes of code can be
overwritten by your code with no ill effect as the basic pokes
them into memory before the assembler is entered.

DEFINITIONS

SOURCE FILE. All typed text including opcodes, labels and any
of your own comments.

OBJECT CODE. This is the machine code produced by the assembler

LABEL. A pointer to an entry point in the source code.

DIRECTIVE. These are special instructions to the assembler
and only tell the assembler to do some particular
job. They will not be assembled as machine code.

SYMBOLS. A LABEL that has had a numeric value given to it
at assembly time - these numbers are stored in a
table called the SYMBOL TABLE. e.g. if your source
file has 7 LABELS, then the values of these labels
and the label name is stored in the SYMBOL TABLE.

(an OPCODE is short for OPERATION CODE - examples of these are
LD A, or LDIR, etc.)

ASSEMBLER INSTRUCTIONS.

All opcodes and instructions must be in upper case. You can have
multi-statement lines as in basic separated by a (:) character.
You can have comments on a line separated from the instruction
by a (;) or by a (*) character. LABELS can be any combination of
upper case lower case or numerals but must start with an
alphabetic character. You can also use the underline character
but not a space. You can have your listings laid out in any way
that you like for instance the below is an example of one
instruction laid out in different ways all are valid and will
assemble ok.

00010 START LD A,10

00030 START LA ,10

00030 START LD A0

00040 START LD A, 10

00080 START LD A,10

The below are all DIRECTIVES as they tell the assembler what to
do, and are not part of the assembled code.

ORG address This is the {instruction you use to tell the
assembler where your code should RUN from when it
assembles. IMPORTANT- YOU MUST NOT USE ORG BELOW
32768 unless you use a PUT {nstruction (see
below).

PUT address This tells the assembler to PUT the ocode at the
PUT address but to assemble it for the ORG
address. For example, you may wish to assemble
your machine code to RUN from address 28000. You
would do the following:

10 ORG 28000

20 PUT 32768 ; Or any address between 32768-65530
You could also have done!

20 ORG 28000:PUT 32768

IMPORTANT - YOU MUST NOT in any circumstances use
a PUT value BELOW 32768.

EQU Means EQUATE or equals. A label may have a value
assigned to it. Useful {f you want to refer to a
point outside of the source code.

This takes the form:
PETER EQU S5000 or NEW EQU 00000 or FRED EQU 2
JP NEW would mean jump to address zero.

DB n,n,etc DEFINE BYTES. Inserts 8 bit data at the current
assembly address separated by a (,).
eg: DB 1,2,3,4,255 etc.

DVW nn,nn etc DEFINE WORDS. Inserts 16 bit data (addresses) at
the current assembly address separated by a (,).
eg DW 12345,32768,49152 etc.

DM "message" DEFINE MESSAGE. Insert the string at the current
assembly address enclosed by quotes (").
eg DM "This is a message"

DS nn DEFINE SPACES. Reserves nn spaces at the current
assembly address.
..3_

eg DS 50 will skip 50 bytes before continuing to
assemble the next instruction.

$ Dollar symbol. This will tell the assembler to use
the current assembly address.
eg LD B, 20
DJINZ $
The dollar has been used instead of a label and
means loop back to the DJNZ instruction.
It could have been written as:

00100 LD B, 20

00110 LOOP DJINZ LOOP
4# nn OR Tells the assembler that the number following is a
& nn hexadecimal number and must take the form:

0000 to #FFFF.

% 11111111 The percent sign tells the assembler that the
following string is a binary number and must take
the form %11111111. Leading zeros in the binary
number are not required but do make the number
more readable by us mere humans. Only eight bit
binary numbers are allowed.

NOTE: Spectrum users with our 280 toolkit program can load the
files created on their assembler and any DEFB or DEFW etc will
be automatically converted to DB DW etc. Also DISP will be
converted to PUT. There is a keyword called TAB this will
re-format the listing to allow for 14 byte labels. The TAB
command will not re-format lines with DM DW or DB on them nor
will it re-format any line with a label on it. There must be 3
spaces between the line number and the opcode for this option to
work. TAB can take a parameter between 8 or 21 and will default
to column 21.

USING THE ASSEMBLER.
To learn how to use the SAM assembler we will use an exanmple.
Once the program has been loaded press (A) to enter the
assembler. You will be presented with the LERM logo on the top
line of the screen, on the next line you will see various status
messages as below:

FILE 1 COL 1 F.LEN 2 FREE 32731 CAPS ON PRT OFF

The first message tells you that you are using Source file 1. If
you press FO you will see the FILE message change to 2
indicating that you are now using file 2. Press FO in the 256k
version once again and you will be taken back to file 1. In the
512k version Fl increments the file and FO decrements the file
allowing you to go through all 8 source files. The second
message tells you what column the cursor is currently on. Next
you are told the length of the file - on start up the file
length will be 2 bytes. These 2 bytes are end of file markers.
Free tells you how much source file memory you have left. The
CAPS ON tells you that upper case characters will be typed in.
Pressing CAPS will give the message CAPS OFF so that you can
type in lower case. All opcodes must be typed in upper case, so
if you have selected lower case for any reason, then when you
press RETURN to enter the line into the source file, the program
4

will automatically toggle back to upper case input. The last
message tells you whether the printer is ON or OFF.

LINE NUMBERS.............. AUTO

Like SAM basic, line numbers are needed. This can be done
manually by typing the line number +then the instruction. The
program can produce them for you - type AUTO and press RETURN
and a 00010 will appear on the screen. If you now press RETURN
again the cursor will drop to the next line and a 00020 will
appear, this is your auto 1ine number mode. So AUTO is a
DIRECTIVE and tells the assembler to AUTOmatically insert line
numbers starting at ten, in steps of ten. You can do AUTO 10 1
and the assembler will produce line numbers in steps of 1. Doing
AUTO 134 2 would put in lines starting at 134 in steps of 2. 1If
you have lines in steps of 10 but want add some lines then you
can use the following technique.

ORIGINAL 130 LD ML, PFRED
140 LD A,10:/PUSH AP

To add some lines (max of 9) between these use AUTO 131 1 and
press ENTER. You will see that BA ocreates lines 131, then 132,
etc, for you .utountlonll{. Don't go Dbeyond 139 or you will
overwrite your original line 140! You oan then RENUMBER the
lines (see later) Note that earlier versions of 8A used INSERT
which we have changed to AUTO.

CLEAR SCREEN...,...
Press the INV key, a olear. If you now type
AUTO and press RETURN you will once again get a line 00010 on
the screen. Alternatively enter CLS and press the RETURN key.

TABULATE._egiggx

Pressing the TAB key will ake the ocursor to the next TAB
position in the line. This has been programmed to make the
second tab position col 21. This allows 16 spaces between the
line number and the opcode so that labels up to 14 bytes can be
accommodated.

BRACKETS _() and underline...F4 FS3 an

For convenience the function keys F4 an will print open and
closed brackets. The F6 Kkey will produce the underline
character. This saves you pressing the shift keys to access
these often used characters.

With line 00010 on the screen type in the listing in FIG.1 not
forgetting to use the tab key. You must press RETURN after every
line otherwise the line will not be inserted into the file.

NOTE: When the cursor reaches col 64 it will stop moving. You
should press RETURN to enter the line. Any character at col 64
will be rejected. Only 63 characters are allowed on a line.

Once the listing has been typed in you can move the cursor to
any position on the screen with +the CURSOR KEYS and make
alterations, but the RETURN key must be pressed for the line to
be entered into the source file. It will not be entered if you
just make an alteration and simply use the cursor keys to move
out of the line.

FIG.1 00010 ORG 16384 : PUT 32768

00020 HMPR EQU 251 ; High Memory Page Register
00030 VMPR EQU 252 ; Video Memory Page Register
00040 START LD HL, 32768
00050 LD DE,DATA
00060 LDBO
00070 IN A, (HMPR)
00080 PUSH AF
00090 IN A, (VMPR)
00100 AND 31
00110 OUT (HMPR),A
00120 LOOP_1 LD A, (DE)
00130 LD (HL),A
00140 INC HL
00150 DJINZ LOOP_1
00160 POP AF
00170 OUT (HMPR),A .
00180 RET
00190 ;
00200 DATA DB 255
00210 END EQU §
00220 LENGTH EQU END-START
00230 _
CLEARLINE...........EDIT key

At this point the cursor will be flashing on line 00230. If you
now press the EDIT key the 1line containing the cursor will
disappear and so CLEAR the line. Press RETURN now and you will
be back in command mode. If you now move the cursor into any
line on the screen and press EDIT the line will disappear. Now
press the INV key (cls) and type LIST. So the EDIT key clears
the current line but the line that was already present in that
position is NOT deleted from the source file.

LIST. .. cveeeeeueennnnnn . .LIST

Typing LIST, then pressing RETURN, will list from the FIRST line
of the source file. Once the screen has filled up pressing
RETURN again will LIST the next screen. Pressing EDIT will exit
from the LIST mode. Typing LIST 140 will list the source from
line 140 onwards. Listing can also be done from a label. e.g
Enter the command LIST START, then press the RETURN key. You
will see that the file has listed FROM the Label START. Having
typed list you will see that the line you CLEARED using the EDIT
key is still in the source file. So EDIT is the clearline key
and will clear the line but not remove it from the file.

Note that you can only enter LIST followed by a label name
provided that this label is placed in the FIRST TAB position.

e.g if you have 00100 FRED LD A,2
00105 PETE LD HL, 65000
00110 JOHN LD (GAP),HL

You can use LIST FRED, or LIST JOHN, but not LIST PETE.

If you are looking at a list AND THE CURSOR IS ON THE BOTTOM

LINE OF THE SCREEN, then by pressing the CURSOR DOWN key, the

next line of the listing will appear on the bottom line, and the

screen will be scrolled up. Similarly, if the cursor is ON THE

TOP OF THE SCREEN and you press CURSOR UP, the list is moved
6

down and the previous line will appear on the top of the screen.

1f, at the start of a line you enter EDIT then a valid line
number like so: EDIT 400 then return

line 400 will appear on the bottom of the screen. If you then
pressed CURSOR DOWN, the next line number will appear on the
bottom of the screen, and so on. If you place the cursor on a
line number then press the F3 key, again a listing of that line
number will appear at the bottom of the screen, and use of
CURSOR DOWN will make the next line number appear and so on.

If you go to the HELP PAGE by pressing F8, and type in a LINE
NUMBER, then move back the cursor to the start of the line
number and press F3 you can see a listing of your source file
within the HELP PAGE. Pressing F8 toggles from the assembler to
the help page, and back again. The colour of the PAPER in the
assembler if black, but in the help page it 1is Dblue. If you
write over a listing IN THE HELP PAGE it does NOT change the
actual source file, so that when you return to the assembler
from the HELP PAGE it will remain as it was. You can also list
from a label within the help page. This can be very useful for
re-veiwing another source file or a routine in the file you are
working on.

ASSEMBLING........c..... . ASSEM

At this point we will Assemble the SOURCE FILE INTO MACHINE
CODE. To do this type ASSEM, the screen will clear and the
message Assembling file 1 will appear. If you have typed in the
listing from Fig.1l correctly including the mistake at line 00060
then you will see the message : Error 4: Comma or bracket
expected. A space will be left and then the offending line will
be re-printed for you to rectify. The line will be re-printed as
follows: 00060 LD B 0. A comma is missing between the B and the
zero, so use your cursors to move into the line and placing the
cursor between the B and the zero type the comma in. Now press
RETURN and then LIST. The comma will have been inserted into the
file so we can once again attempt to assemble the file. Type
ASSEM again and if all is ok you should see the message
"Assembled ok". This tells you that the source file has been
assembled and the code will be at address 32768 waiting for you
to save it. Before we save the source file and the object code
we will look at some other functions of the assembler. SA has
been set with a default setting of 5 errors, so after entering
ASSEM, if there are any errors in your source text, the first 5
will appear on the screen. Pressing RETURN will give the next 5
and so on. You can enter ASSEM 2, and any errors will be printed
two at a time.

RENUMBERING..............RENUM
Type in the following line:
00025 * This is a comment line
Use the CAPS key to enter the lower case characters and when you
have finished typing press RETURN. If you now type LIST you will
see that line 00025 has been inserted into the file at the
correct place in the listing. Now type RENUM (RETURN) and then
LIST again. You will see that the file has been re-numbered from
line 10 in steps of ten and that line 00025 has now become line
7.

00030. You can change the step size of 10 - see appendix.

INSERT/DELETE. F9/F7

Move the cursor into line 00030 and between the (*) and the (T)
and press function key F9. This will insert a space at the
cursor position. If you continue to press the F9 key, the line
will eventually be pushed off the end of the line. Before you do
push the line off the screen, stop, and press function key F7 -
this will pull the 1line back towards the cursor and the
characters will disappear underneath the cursor. In effect these
two keys are F9 insert character at the cursor position and F7
delete a character at the cursor position.

SYMBOL TABLE.............SYM

At this point we will go back to our source file and the object
code. We want to save both the source file and the _object code
but before exiting to the menu we will need to know how long the
object code is. To find out type SYM. This will print the symbol
table for you. SYM tell you the values that SA has calculated
for you can and gave to the LABELS you have created in your
s.file. At assembly time all the labels had addresses or numbers
assigned to them - you should get the following list:

LENGTH 001B 27
END 401B 16411
LOOP_1 4011 16401
DATA 401A 16410
START - 4000 16384
VMPR O0FC 252
HMPR OOFB 251

As you can see the label LENGTH tells us that the length of the
object code is 27 bytes long. Have another look at the listing
to see how this works out. Also note that 1label START is at
address 16384. This was our ORG address but we used a PUT 32768
so in fact our object code is at address 32768 waiting to be
saved. It will need to be loaded back to address 16384 before we
can CALL it to see if it works.

VIEW ALL LABELS.............LABEL

You can look at all of the labels in the file by +typing LABEL.
The screen will clear and the first page of labels will appear
in the order that they are in the file. Typing LABEL A (RETURN)
will list all labels starting with the character A. Pressing
RETURN will list the next page of labels. Pressing ESC will
abort this option and you will be told how many labels there are
up to that point. If you continue to press RETURN until all the
labels have been listed then you will be told how many labels
the file contains.

LAST LINE OF SOURCE.........LAST

Typing LAST will tell you the last line in your source file.
Useful if you wish to continue writing source from the bottom of
the file.

EXIT TO MENU..............QUIT
Typing QUIT and RETURN will take you back to the start up menu.

.-8_

PEEK into memory....... PEEK, DPEEK

If you want to look at the contents of any of the addresses from
0 to 65535, simply use the command PEEK or DPEEK, then RETURN.
e.g. Type PEEK 50000 (and RETURN) or DPEEK 53000 (and RETURN).

TAPE USERS.000ouos

Tape users should read through the following paragraphs but note
that when an option +to load or save 1is selected then the
directory will not appear on the screen.

NOTE: THE OPTIONS TO LOAD, SAVE, AND ERASE, TO DISK, EITHER
SOURCE FILES OR OBJECT CODE HAVE 2 POSSIBLE KEY PRESSES. IF YOU
PRESS THE LOWER CASE, THEN A "DIR" OF THE DISK 1S TAKEN BEFORE
YOU ARE ASKED FOR A FILE NAME. IF YOU ENTER THE UPPER CASE, THEN
NO DIR IS DONE, AND YOU ARE ASKED TO ENTER THE FILE NAME
STRAIGHT WAY. e.g. lower case "s" does a DIR before asking for
the name to save the source file. Pressing capital "S" avoids
the DIR.

SAVING SOURCE FILES......S

There are various options from this menu but for now we want
first to save our source file, so press (S). The screen will
clear and you will see another menu on the screen. There are 4
options available to you in the 256k version.

1 save the source file in file 1
2 Save the source file in file 2
D Save a double file

Q to quit back to the main menu.

As our source file is in file 1 then we will select option 1.
You will first be presented with the directory. Then you will be
asked for the file name. The file name should not be more than 7
characters long. Options 1 and 2 will save files with a (.SF)
tagged onto the end of the name, and when the directory is
called up from option 1 or 2, only the files with .SF will Dbe
shown. At this point pressing RETURN will take you back to the
main menu. Once the file name is entered and the return key is
pressed, the file will be saved and verified. A return to the
MAIN MENU then takes place. If there is not a file available for
saving when you select your choice, then you will be suitably
informed. Saving from file 2 is the same as for file 1.

If you have 2 files in memory you can save them as separate
files or go for the double file option. If you use the double
option you are effectively saving the two separate files as one
single file. This option will save file 1 as 32768 bytes long
and then tag file 2 on to the end, so saving both files as a
complete block. A double file will be saved with a (.DF) on the
end of the name and on selecting this option for saving or
loading then the directory will only show files with .DF on
them. You cannot load a double file as a single file. For saving
menu of the 512k version - see later.

MERGE SOURCE FILES.

Two files can be merged together by using the merge option from

the main menu. This will load in your selected file and join it
9

onto the end of your existing FILE 1. You must be sure that both
files when joined together do not exceed 32730 bytes in total.
Having merged the file onto the end of FILE 1, your first task
must be to go into the Assembler then +type RENUM and RETURN.
FILE 1 will be renumbered and you can now list the combined file
and work on it.

LOADING SOURCE FILES......L

For the 256k version loading source files is the same as for
saving them. There is no need to specify the .SF or .DF - simply
enter the file name to be loaded excluding the .SF or .DF

The directory will only show files that can be loaded. i.e. if a
double file has been selected, only files with (.DF) will be
shown. When a source file 1is loaded the assembler will be
automatically entered. The first page of the file will be
listed. Pressing return will continue the 1listing .or pressing
the EDIT key will abort listing. If you load a file into file 2
then you will have to select file 2 from the keyboard before the
file will list.

For LOADING in the 512k version - see later.

SAVING OBJECT CODE (o]

When this option is selected the full directory is called up and
you are then asked for the name of the file. This can be up to
10 characters as normal. You will then be asked for the START
address of the code — this will be above 32768. You will now be
asked for the length of the code. This is the value you took
from the symbol table and in our example program is 27 bytes.
Once the code has been saved it will be verified and you will be
returned to the main menu. Note that if you used PUT, that is
the address from which you must START saving.

EXIT TO BASIC..... C e e e eas Q

Pressing (Q) will exit to Sam BASIC. We will +try our machine
code now. Type LOAD "filename" CODE 16384. Your object code
was ORGed for address 16384 so this is where we will load it to.
Once loaded type CALL 16384:PAUSE (RETURN). You should see the
top two lines of the screen fill with long white lines. If you
now press RETURN the ok message will appear. What this piece of
code has done is to page your screen into address 32768 and poke
255 into 256 locations starting at the top of the screen. It has
then paged back the area of RAM that was previously at 32768 and
returned to BASIC.

RE-ENTERING ASSEMBLER.....F4
Pressing F4 will run the program and you will be back to the
main menu.

DIRECTORY . .o coooeeeoasss ..D
Pressing (D) will call up the full directory and then wait for
you to press a key and return to the main menu.

ERASING FILES.....cc00... E
Pressing (E) will allow you to erase a file from the disk. You
must type in the full name of the file to ERASE. e.g.If you wish
to erase a source file with the (.SF) on the end of the file
name then you will have to type the filename and the .SF.

._10_

SELECT DEVICE T or D...... M

Pressing (M) will allow you to select tape or disk as your
saving/loading device. When the tape option has been selected
the directory function will obviously not work.

STARTING A NEW SOURCE FILE. NEW and OLD

Typing NEW from the assembler will (if a source file is already
present in the machine), allow you to type AUTO and start
writing a new file. The status line at the top of the page will
show'a file length of zero. 1If, at +this point you wish to
retrieve your OLD source file and before you have started typing
a new file, then type OLD. Your old file will be retrieved for
you. Once you have started a new file then the old file will no
longer be retrievable as new end markers will be put into the
source file.

PRINTER ON-OFF........... PR

The printer can be toggled on or off by typing (PR) all screen
output will then go to the printer as well as the screen. If the
printer is not available or not connected then nothing will
happen. The printing can be aborted at any time by pressing the
ESC key. The printer code sends character 10 to the printer
after every carriage return character, so if you find that you
are getting a blank line between every line you will need to try
our option to remove printing CARRIAGE RETURNS - see later - OR
adjust your printers dip switches. SEE YOUR PRINTER MANUAL.

SEARCHING FOR A STRING....FIND

It is useful to be able to find occurences of a string or a
label within your source file. To do this TYPE (FIND ‘“string").
For example you may wish to find every occurence of the label
FRED. Typing FIND "FRED" will print all occurences of the string
on the screen. When the screen is full the program will wait for
you to press RETURN, and will then continue the search. If you
wish to stop searching when the screen is full just press the
EDIT key. All lines on the screen can, if you wish, be edited at
this point. FIND will only find the actual string, it will not
give the address of a label. An option in the help page will do
this for you, but only after assembly.

REMOVING LINE/LINES....... DELETE

Sometimes a block of lines need to be removed. A single line can
be removed by typing the line number and then RETURN. A block of
lines can be removed by typing the first 1line number to be
removed followed by the last line in the block and pressing
RETURN. e.g. to remove lines 20 to 100 inclusive you would type
DELETE 20 100 and then press RETURN. The block of lines will now
be removed. Typing DELETE with no parameters or DELETE with just
the start line will have no effect.

MULTI-STATEMENRT LINES.....

Multi-statement lines are allowed as in BASIC by using the (@)
character to separate the instructions.

e.g 00010 LD A,2:LD B,A:LD (HL),A etc

This saves source file memory but is not very readable. A (:)
character cannot be used after a (;) or a (*) has been used on a
line to write a comment.

LABELS...... et e e e

Labels can be up to 14 bytes long and can be any combination of
upper case, lower case, or numerals - they must not include
spaces but can use the underline character. Also they must not
start with a numeral (0 to 9). For example START, start, STARt,
STArt, STart, Start, StArT, sTaRt are all valid labels and could
be used in the same file although it would be a bit confusing.
Labels can have an OFFSET (or number) added to them. e.g. JP
LOOP+3 or JP LOOP-3. Listing to a label is alowed. There must be
ONE SPACE between the keyword LIST and the label name.

HEX DECIMAL BINARY NUMBERS.

You can use hex or binary numbers in the source file. For
instance LD A, 255 could be written in hex as LD A, #FF or as &FF
or in binary as LD A,%11111111. Binary numbers can only be used
in their 8 bit form. 16 bit binary numbers are not allowed. Hex
numbers can be in 16 bit form. e.g. LD HL,&FFFF. Note that Hex
values are preceded by a hash character or a & character, and
that binary values are preceded by a percent character. These
characters must be tight against the value. i.e no spaces in
between them. Line numbers will always be in decimal.

CONVERTING TO DIFFERENT BASES

From within the assembler, if you want to convert a number from
one base into another simply type BASE then the number. e.g. to
convert 45 into BINARY and hex type BASE 45 (then press RETURN).

.

THE HELP PAGE/SCRATCH PAD

A novel feature of the program is the HELP PAGE. There are
various options from the HELP PAGE including an ASCII dump,
NUMERIC dump, memory peek, etc. The help page can also be used
as a one page note (or scratch) pad.

ENTRY TO THE HELP PAGE...F8

Pressing F8 will enter the help page. This page uses a different
page of memory for the screen so that, on exit back to the
assembler, your assembly screen is intact including the cursor
position. The status line is replaced on entry with the help
page message. You can type messages onto the screen if you wish,
possibly a label name that you wish to remember and then exit
the help page using F8. Your message will still be visible on
next entry to the help page. We suggest that you experiment with
this option - it will make it much clearer to you. One useful
feature of the help page is the ability to list a source file
into the help page. You can only list to a label and only then
will the listing appear. The help page is a different colour
from the main assembly listing so as not to confuse you about
where in the program that you are. When source is listed in the
help page you cannot edit it or change it in any way. It is
simply a convenient way to review a portion of your source file.

EXIT THE HELP PAGE.......F8
Pressing F8 will exit the HELP PAGE back to the assembler. Your
assembler screen will be restored exactly as you left it.

THE HELP PAGE AS A SCRATCH PAD.

The HELP PAGE uses a separate screen in a 256k machine and two
separate screens on a 512k machine. To type in a message just
precede the line with a (*) character and write the message or
reminder. There is no need to press return as the 1line is not
stored anywhere - it is always on the screen when you next
re—-enter the HELP PAGE. You can re-view the help page from basic
by pressing (R) from the main menu. Anything stored on the help
page will be displayed. Just press any key on the keyboard to
exit back to the main menu. There are 6 options from the HELP
PAGE that need to use the whole screen. On a 512k machine these
options will use a different page of memory from the actual help
page, so ensuring that anything typed into the HELP PAGE will
not be wiped out. On a 256k machine the use of these 6 options
will clear the help page. The 6 options are ASCII dump, Numeric
dump, Peek memory, Single step, Disassembler, and clear object
code file.

FUNCTIONS FROM THE HELP PAGE.

HEX, DEC, BINARY CONVERSIONS.
All printed reports on the screen will remain as part of the
HELP PAGE. Typing (A) + a number will give you the hex, decimal
and binary equivalents of the number. e.g.
A 255 (RETURN) will print

* Hekx OOFF Dec 255 Bin High 00000000 Low 11111111
Typing A #FF will produce exactly the same line.
Typing A%11111111 will again produce the same report.
Binary numbers can only be typed in as eight bit numbers and the
leading zeros need not be typed in.

LOW BYTE HIGH BYTE CONVERSIONS.

Typing (B) + a number will produce the following for example
B65535 * 65535 = Low 255 High 255

Typing BA#FFFF will produce the same number.

CLEARING THE OBJECT CODE FILE.

Pressing (C) RETURN will clear the screen and ask if you want to
clear the object code file. This is the file where <code is
assembled to. Pressing (N) will exit back to the HELP PAGE.
Pressing (Y) will clear memory from 32768 to 65500 and then exit
back to the HELP PAGE.

ASCII DUMP.....cooeeeena D+address.

Typing (D) + an address from O to 65535 will produce an ASCII
dump for you. This consists of address + any character in the
range 32 to 128. If you precede the address with the hash
character the address will be printed in hex.

NUMERIC DUMP...... oo aees N+address.

Typing (N) + an address will produce a numeric dump for you. If
you precede the address with the hash character the dump will be
all in hex.

PEEK MEMORY........o0v00a.. T+address.
Typing (T) + an address will produce the equivalent of the basic
lines 10 LET A=address
20 PRINT A;TAB 6;PEEK A;TAB 11;CHRS PEEK A
30 LET A=A+1 : GOTO 20
_13..

Again preceding the address with a hash + a hex number will
print out in hexadecimal.

DISASSEMBLER................ Z+address.
SINGLESTEP.vivtiennnnn X+address.

All 6 above options will fill the screen and wait for the RETURN
key to be pressed or the Q key to exit. Also, if wusing a 512k
machine, they will use a separate screen from the help page.

SOURCE FILE STATUS........S.
Pressing (S) + RETURN will produce a source file status report
of the currently selected source file as follows:

* STATUS FOR FILE 1

* Start of source...... 98304

* Length of source..... 00002 .
* Free memory......... . 32731 Bytes

* Last line of source.. O

If no file is present in the selected page then you are told NO
SOURCE FILE PRESENT. In the 512k version of the program the
start of the source file is not reported. See summary at the
back of this manual for the addresses.

FIND ADDRESS OF LABEL....F"LABEL

Typing F"label (RETURN) will AFTER ASSEMBLY, tell you the
address assigned to that label when the assembler created your
machine code. This is useful if you wish to find the entry point
to a particular routine or require to peek or poke a byte from
basic. Do not put quote marks at the end of the label - just at
the start. e.g. to find a 1label <called FRED you would type
F"FRED (RETURN). If the label does not exist you will be told
"Not found". This will only work just after assembly.

PRINTER.........0oc00.s....PR.,

If the printer option was selected when you entered the help
page then all output will go to the printer as well as the
screen. The printer can be turned ON or OFF from the HELP PAGE
just by typing (PR).

ENTERING THE DISASSEMBLER Z.
While in the HELP PAGE simply press the (Z) key then the address
at which you want to start DISSASSEMBLING then press RETURN. You
can put a HASH sign before the address for a HEX address. The
DISSASSEMBLER can work on any code in the SAMs memory, including
itself, but normally you would use it to dissassemble CODE you
have loaded into address 32768. So, to dissassemble some machine
code, load it into SAMs memory from BASIC something like so:
LOAD "fred" CODE 32768
then press the F9 key to give you the MAIN MENU. Press (A) +to
enter the ASSEMBLER, then F8 to enter the HELP PAGE. Now enter
232768

and RETURN. The DISSASSEMBLER will produce a page at a time of
dissassembled code. It also shows the undocumented 2ZILOG codes
(see later). Within the DISSASSEMBLER the following operates:

P -~ Toggles the PRINTER on/off

U -~ Toggles UPPER/LOWER case — yes you can see the

dissassembled code in Upper or lower case!
_14—.

T - Toggles between giving a DECIMAL or HEX output.
RETURN - Prints out next page of dissassembled code.
-~ Quit dissassembler and goes back to HELP PAGE.
Gives a numeric dump from address at top of screen.
- Gives ASCII dump from address at top of the screen.
- Gives continuous disassembly until you press any key
it then stops at the of bottom of a page ~ handy for
use with a printer.
ESC - Will halt the disassembler until ESC 1is pressed
again.
A - Plus an address allows disassembly from another
address.
CRSR DOWN Gives next line of disassembly at the bottom of a
page.
CRSR up Will move the disassembly backwards but by one byte
at a time. (nudge)
x - Plus an address gives a displaced disassembly.

Qw20
|

The memory available for the code for you to examine is from
32768 to 65526. If you have a 512k machine, this option uses as
separate screen from the HELP PAGE as does the ASC and numeric
dumps, so that any messages you have within the HELP PAGE will
remain unchanged when using the dissassembler.

You will notice when displaying the disassembly, the screen
shows not’ only the address, followed by the numbers and the
disassembly, but on the right hand side of +the screen appears
the ASCII characters of the numbers. If the numbers are outside
the ASCII range, then a FULL STOP is printed instead.

Displaced disassembly - we have already explained that you must
load your CODE into address 32768 to 65535. But suppose that the
CODE that you want to examine normally runs in the lower half of
memory - between addresses O to 32767! With the DISPLACED
disassembly option you can achieve this so:

e.g. suppose you want to examine some code that is say 2000

bytes long, but normally loads into address 16384.

1. Load the code into address 32768+16384 (always regard address
32768 when using displacement mode as address zero) so Yyou
would load this bit of code to address 49152.

2. Enter the Assembler and use the F8 key to enter the help page
Now enter 2z ©plus any address just +to get into the
disassembler.

3. Now type X and at the prompt enter the address 16384. You
will see the code that you loaded at 49152 being disassembled
correctly as if it had been loaded to address 16384. If you
select the Numeric or ASCII options the original address will
be displayed i.e. 49152+. This will enable you to exit to
BASIC and directly poke the code without having to work out
the displacement.

To sum up, to obtain a disassembly of code that resides under
address 32768, always regard address 32768 as address zero. The
Sam ROM O could be loaded at address 32768 and when you press X
from the disassembler you would type in address 0. This would
then disassemble as if the code were at address zero.

15

MANUAL FOR SINGLESTEP

Singlestep has been written for the SAM COUPE to enable you to
test and de-bug your machine code without crashing. A single
step program will allow you to operate each instruction one at a
time and as you do so all the registers and flags will be
displayed on the screen so that you can see the effect the
instruction has on them. Due to the complexity of the Coupe
there are some instructions that have been trapped and do not
operate. The OUT (NN),A instruction is one of these. 1If this
instruction were to be encountered and operated then the whole
machine could get completely confused. The program is ideal for
testing small routines before insertion into the main body of
the program. It is also very useful for beginners to machine
code enabling them to step through some of the simple bitwise
instructions to see what happens. A lot can be done with this
program so long as you remember its limitations.

PLEASE REMEMBER THIS PROGRAM IS NOT MEAN'T TO ALLOW YOU TO STEP
THROUGH LARGE CHUNKS OF CODE AND IF USED AS INTENDED WILL PROVE
TO VERY HELPFULL 1IN DE-BUGGING YOUR ROUTINES. NO REALTIME
ROUTINES CAN BE STEPPED THROUGH E.G. LOADING, SAVING, SWITCHING
PAGES, ETC. DO NOT ATTEMPT TO SINGLESTEP THE ROM AS THERE IS
ONLY THE ASSEMBLER AT ROM ADRESSES AND A CRASH WILL TAKE PLACE.
ALL CODE TO BE STEPPED SHOULD BE ABOVE 32768.

ENTERING SINGLESTEP - press X FROM THE HELP PAGE.

On entry you will see all the registers and flags displayed and
the program waits for you to enter a start address. This will be
the address that you wish to step from. Once the address is
entered the instruction at that address will be displayed and
the program will wait for you to press the space key before it
is obeyed. Once the space key is pressed then the instruction
will opperate and the registers affected will be changed to
reflect the instruction. Any changes to register values will De
shown as will any effect made on the flags. As Call or Push
instructions opperate you will see the address pushed onto a 10
position stack. Also you are told how many addresses are on the
stack. If your code POPs one to many addresses from the stack
then a negative number will be displayed.

There is an auto step mode built in (press C to start, any key
to stop), and if the program is about to RET to an address of
zero then the auto facility will switch off and the program will
wait for action from you. There is also a breakpoint facility.
If in breakpoint mode the program will once again stop if it
tries to return to address zero. At any time the registers or
flags can be changed manually. When in auto step mode pressing
any key will halt the program. When in breakpoint mode pressing
(P) will stop the breakpoint operation and display the registers
up to that point in the program. Pressiing (c) will re-start.

A simple disassembler is available from singlestep and will
disassemble from the address at the top of the screen. On exit
your singlestep screen will be re-displayed as you left it.

NOTES ON USING SINGLESTEP WHEN WRITING A PROGRAM.
When using the assembler to write your code it 1is sometimes
16

useful to be able to test a few instructions. This can be done
quite easily using source file 2 on the 256k machine or any free
page on the 512k version. It is sometimes the case that your
code in the main file is not ready to be assembled just yet so
using a different page for your test code is useful. Dont forget
only the current file will be assembled on invoking the ASSEM
command. Do make sure that your ORG for your test code 1is well
out of the way of your main file. If your test code wants to use
a ROM routine you will have to set up a dummy routine. For
example you might want to do RST 16 to print out the character
in the 'A' register, you could set up a buffer (block of spare
memory) and send the character code to it instead of printing to
the screen, or you could just use a NOP and make the assumption
that as long as the character was valid then it would have been
printed. This is really the only drawback to the program (not
being able to use ROM routines) but we beleive that in other
ways the program will be very useful to you. It has been used on
many occasions by us at LERM to debug obstinate bits of code and
is much easier than trying to do it on paper!

SINGLESTEP KEY COMMAND SUMMARY. (nn = a number)

A + nn Will allow you to change the address to step from.

B + nn Will set a break point - the address will be seen on
the bottom of the screen. This is really a fast forward
routine once you enter the address of your breakpoint
the program will go through the singlestep operations
without updating the screen wuntil it reaches the
breakpoint address where it will stop and update the
screen. Pressing (B) will abort the routine.

C Auto step until a key is pressed or until a zero is
requested by a RETurn address.
D Enters a simple disassembler from the address at the

top of the singlestep screen. Press Q to exit back to
the singlestep. Will not affect singlesteps registers

or flags.

H Toggles Hex or Decimal display. Will re-display all
registers in hex or decimal. Has no effect on
singlestep operations.

P Will stop fast forward when in breakpoint mode and
re-display the screen. Press (C) to resume
breakpointing.

Exits singlestep back to the help page.
Will allow you to change any single or double register
value, also lets you change a specific flag value.
Single registers are changed by typing A, B, etc. For
a 16 bit register such as HL for instance press SHIFT+H
and you can then enter the new 16 bit value. To change
a flag value select 1 from the prompt and then (F) and
you will be prompted for a flag which will just toggle.
T Will toggle the alternate set of registers into the
current set. This is useful if you want to change an
alternate register value. Toggle them into the current
set (upper set are always current) and use the R option
to change them, then toggle them back to where they
were. Toggle upper case or lower case opcode display.
SPACE Singlesteps one instruction at a time.

[0

_17—

EXTRAS FOR THE S12K VERSION

This version allows up to 8 s.files to be loaded into memory.
These files could be 8 SINGLE files, which are always saved with
the chosen name with ".SF" add on the end. You can LOAD/SAVE
into any of the 8 pages of memory.

If you are building up a large program that requires say S
s.files, then you would want to LOAD/SAVE all 5 in ONE COMPLETE
BLOCK. S.Files that use 2 PAGES are saved with ".DF" on the end,
3 PAGES long ".3F", 4 PAGES long ".SF", up to ".8F". These files
MUST always load/save from the start of the FIRST file, which
the BASIC does AUTOMATICALLY for you. This is not 1like SINGLE
FILES which can be loaded into any PAGE of the 8 pages of
memory. PLEASE NOTE THAT THESE BLOCK FILES CAN'T ACCESS THE SAME
SYMBOL TABLE, SO THAT IF YOU HAVE A SYMBOL CALLED FRED IN FILE 1
WHICH IS A 23000 AND THIS VALUE IS NEEDED INTO FILE.2, THEN YOU
MUST PUT FRED EQU 23000 INTO THE SECOND S.FILE.

When you do a LOAD/SAVE which includes a DIR, then only the
directory will only show files ending in ".SF" or ".DF“* if you
are loading/saving single or double files. When loading/saving
blocks of size 3 or more then a complete DIR of the disk will
appear. This is because the DOS doesn't seem to like to do a DIR
of files ending only with ".S5F"!

When you SAVE files, you are shown on the bottom half of the
screen, the amount of memory present in each PAGE of memory.
When you save the first 3 PAGES, the program will save 32k for
the first page, plus 32k for the second, plus the amount of
memory used in the third. This is automatic.

LOOKING INTO SAM ASSEMBLERS BASIC

COLOURS

If you look into lines 60 + 65 (25 + 40 for 512k version) of the
BASIC you will see the PALETTE colours we have chosen for SA.
Naturally you can change them and RESAVE using the FO or Fl1 keys
for disk/tape.

PRINTER

When using a printer, SA uses micro-print, which selects a font
type which is small, and means that more text can appear on a
sheet of paper. If you look at line 1500, and do GOTO 1500, then
you can turn off this micro-print to “normal" size. You will
then RESAVE as usual. To turn the micro-print back ON do GOTO
1515 + RESAVE. The lines for the 512k version are 6000 and 6030.

Some printers are set up in such a way, using DIP switches, so
that you always get blank line between all printed lines. If so
do GOTO 1515, and RESAVE. This can be reversed using GOTO 1650.
For the 512k version they are lines 6060 and 6090.

THE 256K VERSION - SINGLE FILES ONLY

The majority of programs you write will only required one
s.file. To save you time having to select (1), (2), or (D) to
load/save, you can make a version that assumes that you only
ever use ONE PAGE of memory. To do this, go into BASIC, and EDIT
lines 415 and 950 to remove the REM. Press FO/F1 to save to
disk/tape. - 18 -

APPENDIX

PLEASE READ THROUGH THIS SECTION, AS IT NOT ONLY GIVES A SUMMARY
OF THE PREVIOUS PAGES, BUT ALSO CONTAINS EXTRA INFORMATION.
EXPERIEMNT WITH THE OPTIONS FOR YOURSELF AND SEE WHAT HAPPENS.

GENERAL STRUCTURE
From BASIC menu press A to get into the ASSEMBLER.
From ASSEMBLER press F8 to toggle in/out of HELP PAGE.
To get to DISASSEMBLER press Z+number from WITHIN THE HELP PAGE.
To get to SINGLESTEP press X from the HELP PAGE.

ERROR MESSAGES
The assembler generates error messages when an error occurs
during assembly. The line that the error is on will be printed
on the screen and can be edited immediately.

ERROR 0 Illegal character or incomplete statement.
ERROR 1 : Labels cannot be more than 14 bytes long.
ERROR 2 : You have missed a bracket from the opcode.
ERROR 3 : The Jump Relative or IX+ or IX- is out of range.
ERROR 4 : You have missed a comma or bracket from the op code.
ERROR S : There is a context error in your line.
ERROR 6 : The label has been used more than once.
ERROR 7 : You have missed a bracket from the opcode.
ERROR 8 : An illegal opcode has been used.
ERROR 9 : The label has not been defined yet.
ERROR 10: There is no source file to assemble.
KEY SUMMARY
ASSEMBLER.
FUNCTION KEYWORD PARAMETERS EXPLANATION
ASSEMBLE. ASSEM x Assemble and print x errors
(default is 5)
AUTO LINE AUTO Xy Start auto 1line numbering
NUMBER. from line x with y steps.
BASE BASE XX xx will be either decimal
CONVERSION. hex or binary. All the
bases will be printed.
CLEAR SCREEN. CLS or the INV key Clears the screen.
DELETE DELETE Xy Delete from line x to line
BLOCK. y inclusive.
DOUBLE PEEK. DPEEK nn Does a double peek of the
specified memory location.
EDIT LINE. EDIT XX Pulls the specified line to
the bottom of the screen.
SEARCH FIND "string“x,y,z Find "string" between line
SOURCE FILE. x and line y and print z

occurencies at a time.
19

LIST ALL
LABELS.

LIST FILE
BY LINE
NUMBER.

LIST LABEL.
NEW SOURCE
FILE.

RETRIEVE
OLD FILE.

SINGLE PEEK.

PRINTER.

EXIT TO
MAIN MENU.

RENUMBER
SOURCE FILE.
PRINT SYMBOL
TABLE.

TAB LISTING.

CURSORS keys e .
EDIT KOyooviiiiii,
F7 function key e

LABEL A,B,C,etc
LIST Xy
LIST X,y
LIST FRED
NEW

OLD

PEEK xx
PR

QUIT

RENUM Xy
SYM X
TAB B ¢

Will list all labels in the
file starting with 'A' one
screenful at a time. RETURN
lists next screenfull.ESC
exits the listing. LABEL on
its own defaults to all
labels. On exit the number
found will be reported.

List from line x to line y
one page at a time.

Lists y lines starting from
line x. Handy for non-stop
printing.

Will list from
if FRED exists.

label FRED

Start a new source file.

Retrieve old source file if
there is one in the machine
Only after typing NEW and

before a new file is
started.
Do a single peek of the

address specified.
Toggle printer on or off.

Exits to main menu.

Renumber the file with the
first 1line as x and 1in
steps of y.

Print the symbol table x
lines at a time.

Tab lines across the screen
x not less than 8 or
greater than 21. Will not
work on lines with 1labels,
DM or DB on them. Used
mainly to convert files
created on SPECTRUM 280
toolkit. Default = 21.

ASSEMBLER SCREEN EDITOR

—zo—

Left, Right, Up, Down.

«v..s. Clear the line containing

the cursor, or exit from
1ist and auto insert modes.
Delete character at cursor
position (pull line).

F9 function key Insert space at cursor
position (push line).

F8 function key Enter/Exit help page.

F4 function key Print an open bracket.

F5 function key Print a closed bracket.

Fé6 function key Print underline character.
F3 Function key Placing the cursor at the

begining of a line and
pressing F1 will bring that
line down to the bottom of
the screen.

FO function key ... 256k Toggle between file 1 or 2.

FO function key ... 512k Move forward into files.

F1 function key ... 512k Move backwards into files.

INV KeY «tviierencnnaansnannnns Clears the screen and homes
the cursor.

TAB key eseesssasaanasess Move cursor to next
available tab position.

CAPS KeY .vcevecenccnananss Toggle caps lock ON/OFF.

DELETE key esecessscacssans Delete character to the
left of the cursor.

ESC key cevsassscssssesas Aborts printing or
assembly.

SYMBOL + Function keys Prints numbers O to 9.

HELP PAGE SUMMARY
F8 Enter / Exit the help page.
A plus x print the Hex / Decimal / Binary value of x.
A¥ as above. Hexadecimal input. e.g.4FFFF
A& as above. Hexadecimal input. e.g. &FFFF
A% as above. Binary number input. e.g.%11111111
plus x prints the low byte and high byte of x.
Clear the object code file.
plus address. Prints a ASCII dump. Q to exit.
plus hex address. Prints a Hexadecimal ASCII dump. Q to exit
plus label. After assembly will find address of label.
e.g. F"FRED will find address of FRED.
plus address prints a numeric dump. Q to exit.
plus hex address will print a hexadecimal numeric dump.
Toggles printer ON/OFF.
Prints the status of the current source file.
plus address. Prints address + peek of address + chr$§ peek
address. Q to quit.
+ address enters DISSASSEMBLER. (Q to return to Help page).
enters the Singlestep mode.

MN O HundzzZ mMouaQuo

HINTS AND TIPS
Instead of doing CP O you can do OR A - this 1is Dbecause OR A
uses one byte, whereas CP 0 uses 2 bytes. Instead of LD A,O
which uses 2 bytes, use XOR A uses one byte. In both cases 'A’
will be loaded with a zero.

AN 8 BIT PAUSE LOOP.

LD B, 255 ; Loop round 255 times doing nothing
LOOP NOP ; until B = 0. then RETurn.

DJNZ LOOP

RET

A 16 BIT PAUSE LOOP.
LD BC, 12345 ; Loop round 12345 times doing
LOOP DEC BC ; nothing until A=0. Then RETurn.
LD A,B
OR C
JR NZ,LOOP
RET

SWITCHING A PAGE OF MEMORY INTO ADDRESS 32768.
ORG 16384 : DISP 32768

IN A, (251) ; HMPR

PUSH AF ; Store current page.

LD A,10 ; Use page 10.

OUT (251),A ; Switch page 10 into 32768.

; REST OF PROGRAM

POP AF ; Retrieve original bage.
OUT (251),A ; Switch it back in.
RET ; And exit.

BASIC will switch pages automatically for you. For instance the
code below is written to run from 32768. You could 1locad it
elsewhere (only at the START of a page - e.g. 65536+Y*16384,
where Y is 1, or 2, or 3, ete) and call it as required. The
basic will bring the relevant page down to 32768, call the code
and exit back to the BASIC,

ORG 32768
START LD A,2
CALL 274 ; Bet stream 2 , the screen
LD HL,MESSAGE ; Point HL at string to be printed.
CALL PRINT

RET ; Exit back to BASIC

PRINT LD A, (HL)

OR A Compare with 0
RET Z Return to calling routine if A=0
PUSH HL ; Save the pointer on the stack.

i
RST 16 ; ROM routine. prints the character in the

POP HL '‘A' register.

INC HL Increment pointer to next character.
JR PRINT ; Loop until 'A' = 0 then exit.
MESSAGE DM "Your name." : DB O

END EQU §

LENGTH EQU END-START
Assemble this routine and then save it using the O option from
the menu. Now reset the SAM and re-boot the disk by typing
BOOT1. Load the code to a memory page boundary. e.g. LOAD "CODE"
CODE 180224. This is the page boundary that starts off at page
10 of memory. You run it from BASIC with CALL 180224.

You will see your message printed at the top of the screen. This
shows that the BASIC system has moved page 10 into address 32768
and called the code from there. Try other PAGE BOUNDARY
addresses for yourself the above formuala helps find them), but
make sure the machine is reset every time before loading the
code and calling it

—22_

READING THE KEYBOARD

10 ORG 32768 or anywhere
20 KEYSCAN LD HL, 23611
30 LOOP LD A, (23560)

FLAGS system variable
KBHEAD system variable

40 CP "a ; check for lower case "a"

50 RET 2 ; Return to calling routine if match
60 RES 5 (HL) ; Reset bit 5 of FLAGS

70 JR LOOP ; Continue until match found

This routine will keep looping until the "a" key is pressed.

UNDOCUMENTED CODES

There are quite a few instructions in the Z80 processor that
Zilog did not document which are reproduced below. The
disassembler will handle them all with no trouble. The assembler
will not accept them as mnemonics but they can be entered into a
source listing by using the following method. As an example one
such instruction is
LD A,IX'I

This means load the 'A' register with the IX's I value. This is
why the I and the X is shown separately on the screen. The
decimal numbers for the above opcode are 221,124. These can be
inserted into the assembler as follows:

00100 DEFB 221,124 ; this is LD A,IX'I

As you can see we have used a comment, so that you can see what
the instruction is supposed to be. The above example 1is the
format that the disassembler will display them in. Note that to
use IY instead of IX you should substitute DD for FD or 221 for
253, other than that the codes are the same.

ADC A,IX'I would mean ADD A including the carry flag, to the
HIGH byte of IX, or ADC A with IX's I.

OTHER LERM PRODUCTS FOR THE SAM

SAMTAPE -~ our superb SPECTRUM emulator. The "standard" one used
by many SAM owners.

SAMDISK - an essential program for all disk owners. Super
COPYING routine, repairs disk, special format, fast erase, hide,
protect, uneraese, supports 256+512 SAMs and TWO DRIVES, plus
much more.

SAM ADDRESS and PHONE manager. Stores names, addressess and
phone numbers. Prints labels, fast search, etc. Handy for easy
Telephone directory, printing friends names/addresses for X-mas
1ist, keeping track of customers in a business, etc.

FOR MORE INFORMATION, SEND A STAMPED ADDRESSED ENVELOPE TO:
LERM SOFTWARE, 11 BEACONSFIELD CLOSE, WHITLEY BAY,
TYNE AND WAER. NE25 9UW. TEL (091) 2533615.

LERM SA3-vl - 1290.
_23—

